

Why 5G?

Why 5G? More of everything is expected in the future

More Devices & Connections

There will be 11.5 billion mobile connected devices by 2019, exceeding the world's projected population at that time (7.6 billion).

Source: GSMA

More Diverse Use Cases

5G can support very diverse use cases and applications with extreme range of requirements and at the same time it can create new opportunities

Higher Spectrums & Larger BWs

Both sub-6GHz and beyond 6GHz spectrum bands will be needed and used on 5G. Use of much wider bandwidth, up to 400MHz, will also become available.

Source: 3GPP

5G Vision

5G Vision & Use Cases

Connectivity Paradigms

5G Key Technology Components

Main pillars of NR

New Spectrum

Use of wider frequency ranges

Multi-RAT Connectivity

Initially based on Dual Connectivity with E-UTRA as master

Flexible Framework

- Scalable numerology and slot duration
- Nominal traffic puncturing

mMIMO & Beamforming

 Hybrid beamforming

UE beam steering

Network Flexibility

- Flexibility numerology
- Network Slicing
- NFV/SDN

4G vs. 5G Performance Comparisons

 In order for 5G use cases to become reality, a set of key 5G recommendations and requirements have been identified by 3GPP. As defined in LTE R12, 4G system falls short of meeting some of those requirements

	Some Major Requirements Comparison			
	LTE in Practice (as of R12)	5G Overall Requirements		
User experienced Data rate	-	100 Mbps		
DL Peak Data Rate	1 Gbps	20 Gbps		
UL Peak Data Rate	0.5 Gbps	10 Gbps		
DL Spectral Efficiency	6.1 bps/Hz	30 bps/Hz		
UL Spectral Efficiency	4.3 bps/Hz	15 bps/Hz		
Latency	User: 10 ms Control: 50 ms	User (URLLC): 0.5 ms User (eMBB): 4 ms Control: 10 ms		
Reliability	Not Specified	99.999%		
Connection Density	Not Specified	1 million/km2		
Mobility	350 km/h	500 km/h		

Major gaps between 4G & 5G are in the areas of speeds and latency

In 5G, support for higher frequency ranges allows for larger capacity and throughput

In 5G, support for scalable numerologies and multiple sub-carrier spacing allows for ultra low latency and agile transmission

Source: Nokia

4G vs. 5G Major Radio Comparisons

	4G	5G
Spectrum Support	Sub-6GHz	FR1 (Sub-6GHz) FR2 (mmWave)
Maximum Bandwidth Support	20MHz	 FR1: 50MHz (@15KHz SCS) 100MHz (@30 & 60KHz SCS) FR2: 200MHz (@60KHz) 400MHz (@120KHz)
Maximum CCs	5 (Rel.10), 32 (Rel.12)	16
Spectrum Occupancy	90% of Channel BW	98% of Channel BW
Sub-Carrier Spacing (SCS)	Fixed SCS of 15KHz	Multiple SCS: 2 ^µ x 15 KHz
Waveform	DL: CP-OFDM UL: SC-FDMA	DL: CP-OFDM UL: CP-OFDM & DFT-s-OFDM
Maximum Number of Sub-carriers	1200	3300
Subframe Length	1ms	1ms
Latency (Air Interface)	10ms	<1ms
Channel Coding	Turbo Coding (data) TBCC (Control)	LDPC (data) Polar Coding (Control)

5G Spectrum Bands

5G wider spectrum range

Two types of frequency range are defined in 3GPP

	Туре	Frequency Range	Band Type	5G Deployment Strategy	
Sub-			Low Band < 1GHz	Frequencies < 1GHz performs well in applications requiring long range and low to medium data rates, mainly deployed in macro design. In 5G, they will be leveraged for lower data rate and narrow band applications and are looked at for the mMTC	
	Sub-o GHz	450 MHZ - 6 GHZ	Mid Band 1 GHz - 6 GHz	Mid band is being looked at for use cases that need of the order of 100MHz of bandwidth, with the 2.5GHz Band 41 and 3.5GHz regarded as candidates for 5G eMBB applications, deployed i macro and small cell network design	
L K Z	mm-Wave	24.25 GHz - 52.60 GHz	High Band	The high end of the spectrum offers the most dramatic increase in available bandwidths, mostly deployed in ultra-small cell design within hotspot areas	
		450 MHz	FR1	6 GHz 24.25 GHz FR2 52.60 GHz	
Low Band Mid Ba ← Wide coverage, high mobility and re		and Mid B	and mmWave		
		erage, high mobility and i	reliability Higher capacity and massive throughput →		
		\rightarrow			
		\prec	3532876		
		Mac Deploy	ro Macr ment Cell D	ro & Small Ultra Small Cell eployment Deployment	
		Covera	ge	Capacity	

5G NR Operating Bands

5G NR FDD Frequency Bands in FR1

5G NR Band	Uplink Frequency	Downlink Frequency	Bandwidth	Duplex
n1	1920 -1989 MHz	2110 - 2170 MHz	60 MHz	
n2	1850 - 1910 MHz	1930 - 1990 MHz	60 MHz	
n3	1710 - 1785 MHz	1805 - 1880 MHz	75 MHz	
n5	824 - 849 MHz	869 - 894 MHz	25 MHz	
n7	2500 - 2670 MHz	2620 - 2690 MHz	70 MHz	
n8	880 - 915 MHz	925 - 960 MHz	35 MHz	
n12	699 – 716 MHz	729 – 746 MHz	17 MHz	
n14	788 – 798 MHz	758 – 768 MHz	10 MHz	
n18	815 – 830 MHz	860 – 875 MHz	15 MHz	
n20	832 - 862 MHz	791 - 821 MHz	30 MHz	FDD
n25	1850 – 1915 MHz	1930 – 1995 MHz	65 MHz	
n28	703 - 748 MHz	758 - 803 MHz	45 MHz	
n30	2305 – 2315 MHz	2350 - 2360 MHz	10 MHz	
n65	1920 – 2010 MHz	2110 – 2200 MHz	90 MHz	
n66	1710 - 1780 MHz	2110 - 2200 MHz	90 MHz	
n70	1695 - 1710 MHz	1995 - 2020 MHz	15/25 MHz	
n71	663 - 698 MHz	617 - 652 MHz	35 MHz	
n74	1427 - 1470 MHz	1475 - 1518 MHz	43 MHz	

5G NR TDD Frequency Bands in FR1

	5G NR Band	Uplink Frequency	Downlink Frequency	Bandwidth	Duplex
	n34	2010 – 2025 MHz		15 MHz	
	n38	2570 - 2620 MHz		50 MHz	
	n39	1880 – 1920 MHz		40 MHz	
_	n40	2300 – 2400 MHz		100 MHz	
à	n41	2496 - 2690 MHz		194 MHz	
	n48	3550 – 3700 MHz		150 MHz	TDD
	n50	1431 - 1517 MHz		85 MHz	
	n51	1427 - 1432 MHz		5 MHz	
	n77	3300 - 4200 MHz		900 MHz	
	n78	3300 - 3800 MHz		500 MHz	
	n79	4400 - 5000 MHz		600 MHz	

5G NR Frequency Bands in FR2

	5G NR Band	Uplink Frequency	Downlink Frequency	Bandwidth	Duplex
	n257	26.5 - 29.5 GHz		3 GHz	TDD
Ē	n258	24.250 - 27.5 GHz		3.250 GHz	
	n260	37 - 40 GHz		3 GHz	
	n261	27.5 – 2	8.35 GHz	850 MHz	

ENDC Frequency Bands

Note: view is limited to major ENDC combos. Also, the view is limited to 2CC combos (3CC, 4CC, and 5CC views not shown)

Source: 3GPP TS38.101-3

5G Radio Frame

5G NR Frame Structure & Numerology

- When compared to LTE, the support of multiple numerologies and subcarrier spacing is the most outstanding NR feature presented in 5G
- Why multiple numerologies? 5G supports much wider frequency bands. At higher frequency, the phase noise increases.
 Numerologies with larger SCS provides signal robustness

Subframe

Sprint

Mini-Slots

Types of 5G scheduling: Mini-Slot Benefits: ✓ mini-slots provide a viable solution to **Slot-based scheduling Non-slot based scheduling** low-latency transmissions (type A scheduling) (type B scheduling) irrespective of sub-carrier spacing Where a slot with 14 OFDM symbols Where mini-slot with 2, 4, or 7 OFDM mini-slots allows multiplexing of is the basic scheduling unit symbols is the minimum slot scheduling **URLLC and MBB** Slot duration scales with subcarrier • A mini-slot can start at any OFDM symbol. mini-slots can over-write a longer spacing $(1/2^{\mu})$ This provides fast transmission allocation (punctured scheduling) opportunities (e.g. URLLC)

1 radio frame (10ms)

5G Supported Bandwidths

bandwidth, 50, 100, 200, and 400MHz

60KHz

120KHz

SCS KHz) 66

32

•

Supported NR Carrier Bandwidths & Transmission Bandwidth Configuration						
(Number of Resource Blocks)						
50 MHz 100 MHz 200 MHz 400 MHz						

264

132

264

132

66

5G Multiple Access Technology

Multiple Access in 5G

- Time Division Multiple Access (TDMA)
- Space Division Multiple Access (SDMA)

Basic Scheduling Unit

frequency

Resource Block (RB)

5G Massive MIMO & Beamforming

5G Massive MIMO & Beamforming

- Massive MIMO is the extension of traditional MIMO technology but using large number of controllable antennas (>8).
 - It allows for simultaneously serving many UEs in the same time-frequency resources
 - Higher network capacity
 - Higher spectral efficiency
 - It allows for beamforming of large number of small RF units inside the antenna
 - Better signal strength
 - Coverage enhancement

Multi-antenna technology use in NR has 2 main objectives

In case of sub-6GHz spectrum: Improve Capacity & Spectral Efficiency

In case of mmWave spectrum: Improve Signal Strength & Coverage

5G Network Architecture

5G Network Architecture

©2019 Sprint. This information is subject to Sprint policies regarding use and is the property of Sprint and/or its relevant affiliates and may contain restricted, confidential or privileged materials intended for the sole use of the interaction descent and the property of Sprint authorization.

