MAC Layer Aspects of Satellite-IoT

When theory meets real-time data !

Ayush Kumar Dwivedi

Mentors: Prof. Sachin Chaudhari, Dr. Houcine Chougrani, Dr. Neeraj Varshney, Prof. Symeon Chatzinotas

Signal Processing and Communication Research Center (SPCRC)

10 Jan 2024

Introduction

- Quick look at previous presentation
- Why MAC layer aspects?

Transmission reduction schemes

- Transmission reduction using Shewhart
- Machine learning-based prediction models

Performance analysis

- NB-IoT via LEO satellites
- Reduction percentage, Effective data vs Visibility, Battery lifetime

- Ayush Kumar Dwivedi, Houcine Chougrani, Sachin Chaudhari, Neeraj Varshney, Symeon Chatzinotas, "Efficient Transmission Scheme for LEO Satellite-Based NB-IoT: A Data-Driven Perspective", under review at *IEEE IoT Journal*, 2023.
- 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network, "Study on NB-IoT/eMTC support for Non-Terrestrial Networks (NTN) (Rel 17)," TR 36.763V17.0.0, 2021.

I. Introduction

Previous presentation, Why MAC layer aspects?

Although discontinuous coverage is considered, the observations remain relevant for scenarios where IoT devices connect and follow one satellite at a time to reduce the complexity of antenna and signal processing aspects.

- One of the important function of MAC layer is channel access control and scheduling/queuing
- Traffic generated by IoT networks is unique in many ways.

- While using LEO satellites for IoT, time is critical since an individual satellite is only visible for a limited duration.
- Can we better schedule the uplink transmissions to accommodate more devices?

created_at		temperature humidity		pm25	pm10	
01-Jan-2022	00:00:00	26.43	52.93	30.7	39.1	
01-Jan-2022	00:00:30	26.42	52.93	30.9	34.8	
01-Jan-2022	00:01:00	26.43	52.9	34.8	67.1	
01-Jan-2022	00:01:30	26.43	52.9	30.9	34.5	
01-Jan-2022	00:02:00	26.43	52.85	31.4	37.7	

ighthing IoT-Testbed: How much data?

- Sensing every 30 sec (2880 datapoints per day, ~1 million per year, per device)
- Around 50 devices deployed (few for 3 years, few for 2 years)
- Sensor data with anomalies of known kinds

₩ IoT-Testbed: How much data?

II. Transmission reduction schemes

Transmission reduction using Shewhart, ML-based prediction models

Shewhart-based transmission reduction

Transmit only when new value changes significantly

$$|x_t - x_{\hat{t}}| > \tau$$

\triangleleft Shewhart-based transmission reduction

Transmit only when new value changes significantly

$$|x_t - x_{\hat{t}}| > \tau$$

Transmission Mode		Simultaneously	%	RMSE	
		IX. Nodes	Reduction	L	
M0	Baseline: Transmit all the parameters	230	0	()
M1	Shewhart on all parameters	30	87.16	T: 0.16	RH: 0.62
	Snewhart on an parameters			PM2.5: 1.29	PM10: 2.10
M2	Shewhart on PM10 only (transmit PM10 and predict PM2.5)	26	88.33	PM2.5: 2.34	PM10: 2.22
МЗ	Shewhart on AQI only (transmit PM10 and predict PM2.5,	0	96.54	PM2.5: 4.23	PM10, 7 56
	calculate AQI at the server)	0			1 1/110. 7.50

ML-based prediction model

- Transmit only few independent parameters, predict others at gateway
- Transmit PM10 only and use PM10 to predict PM2.5

Model	Configuration	RMSE	R-Squared	
woder		(ppm)	Validation	
Linear Regression	Ordinary least squares	2.1297	0.9808	
Decision Tree Bogressor	Max. depth $= 10$	2 3587	0.0806	
Decision free fregressor	Min samples split $= 5$	2.0001	0.9800	
	No. of estimators $= 100$		0.9835	
Random Forest Regressor	Max. depth $= 10$	2.0563		
	Min. samples split $= 5$			

III. Performance Analysis

NB-IoT via LEO satellites, Reduction %, Effective data vs Visibility, Battery lifetime

In NB-IoT, communication unfolds in two distinct phases:

- Access or contention: Nodes vying for connection through NPRACH, transmitting a preamble during random access opportunities (RAO).
- Data phase: Exchanging messages on allocated resources.

$$\mathbb{P}[X_i = k] = \binom{N}{k} \left(\frac{1}{m_{\text{RAO}}}\right)^k \left(\frac{m_{\text{RAO}} - 1}{m_{\text{RAO}}}\right)^{N-k}$$

$$N_{\text{coll}} = N - (m_{\text{RAO}} \times \mathbb{P}[X_i = 1])$$
$$= N \left(1 - e^{-N/m_{\text{RAO}}}\right)$$
$$\mathcal{P}_{\text{coll}} = 1 - \exp\left(-\frac{N_{\text{coll}} P_{\text{BO}}}{m_{\text{RAO}}}\right)$$

Percentage reduction

- Reduction percentage sharply increases with higher thresholds.
- 96% reduction in transmission would mean sending only 4 out of every 100 newly sensed samples instead of sending all of them otherwise.

Percentage reduction

- Simultaneously transmitting devices increase linearly with network size but are significantly fewer in number with Shewhart compared to the baseline scheme.
- The result from this plot is crucial for examining other KPIs in larger networks - serves as a tool to simulate the effects of the proposed transmission modes.

Traffic pattern

• The traffic pattern generated by Shewhart is not Poisson!

Temperature data with 0.5°C threshold

Particulate matter data with 25ppm threshold

200

300

Actual data

Exponential fit

- The figure underscores the potential for increased load capacity by implementing the proposed transmission scheme.
- Ex: for a target collision probability of 0.4, while the baseline method supports only 57 devices, Mode 1 and 2 can accommodate nearly 450 devices, and Mode 3 can support close to 1650 devices.

- Effective data is defined to encompass the data not transmitted by the nodes due to Shewhart but predicted at the server.
- For example, what Shewhart-based access modes can transmit in less than a minute would otherwise take 5 minutes in the baseline transmission method.
- Valuable, particularly in LEO scenarios with discontinuous coverage, where visibility duration is a crucial and limited resource.
- Even with continuous coverage, it is advantageous by reducing the required bandwidth to transmit target effective data.

State	Operation	Duration (ms)	Power (mW)
Reception (DL)	Sync, MIB, RAR Msg2, Msg4, UL grant, HARQ ACK.	371	90
	IP ACK, PDCCH monitoring,		
Transmission (UL)	PRACH, RA Msg3 RAR,	50B UL: 335	543
	IP Report, HARQ ACK	200B UL: 1006	040
Idle (not in sleep)	MIB acquisition, waiting IP ACK, PRACH, ready timer, scheduling	22423	2.4
Dowon cove (clean)	Sleeping state when the satellite	based-on	0.015
rower save (sieep)	is not visible	visibility	
GNSS	GNSS reception	2000	37

Inter-pass			Mode 2		Mode 3	
duration	Baseline	Mode 1	200B UL	50B UL	200B UL	50B UL
(hrs)				JOD CL		
2	0.13	0.69	0.87	1.54	1.60	2.46
6	0.38	1.87	2.23	3.90	3.67	5.73
12	0.76	3.46	4.04	6.86	6.23	9.46
24	1.49	6.30	7.18	11.41	10.62	15.06

- Expected average battery lifetime of a 5000 mWh battery under specific conditions, such as a maximum coupling loss (MCL) of 164 dB (worst-case scenario).
- Estimated enhancement in battery lifetime, coupled with the capacity to accommodate more devices, underscores the viability of the proposed transmission scheme.

- Shewhart traffic significantly reduces the number of simultaneously transmitting nodes and associated collision probability compared to the baseline without transmission reduction.
- Integrating ML algorithms for payload reduction substantially extends the battery lifetimes of IoT devices.
- A compelling solution for addressing the challenges of limited visibility, low data rates, and energy constraints in satellite-based IoT networks.

Thank you !

Ayush Kumar Dwivedi

Research Scholar

Signal Processing and Communication Research Centre (SPCRC)

IIIT Hyderabad, India

ay ush. dwivedi@research. iiit.ac. in

