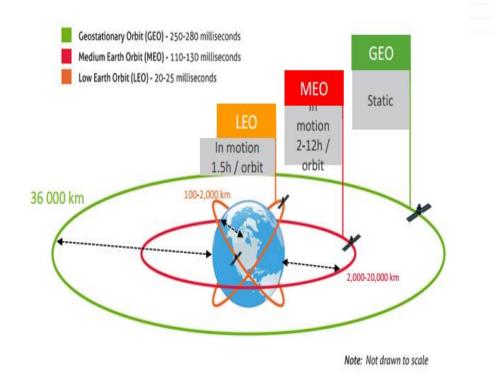
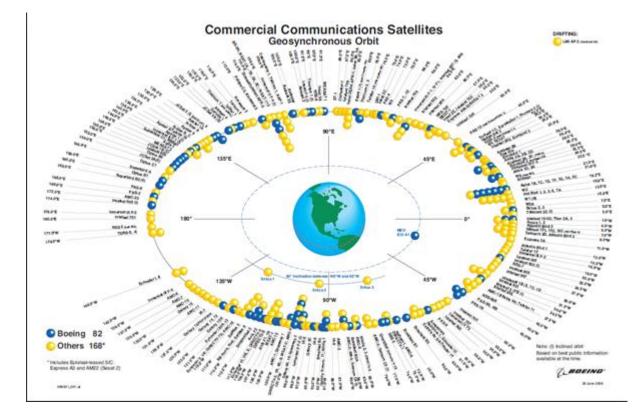


# AN IEEE 5G WEBINAR: 5G and Satellite 5pectrum and Standards


With Moderation by Peggy Matson

Geoff Varrall RTT Programmes Join us October 19 at 11:00am ET

#### 5G and satellite spectrum, standards and scale


- WRC 2019 race for space spectrum?
- Compatibility/coexistence with GSO, LEO and MEO Ku, K and Ka-band satellite spectrum and 5G terrestrial including 28 GHz
- NEW LEO constellation capabilities including OneWeb and Space X and LEOSAT
- Progressive pitch angular power separation- Spectrum sharing and frequency reuse opportunities and challenges.
- Pass bands and channel bandwidth compatibility and physical layer coexistence
- Present tension points between NEWLEO entities and incumbent LEO and MEO and GSO operators
- Link link budget and long distance latency benefits of nearly always nearly overhead (NANO) or Always Overhead (AO) connectivity when integrated with inter satellite switching
- How this could help meet specific 5G vertical market throughput and latency requirements
- Satellite IOT, present and future technical and commercial trends and standards issues
- Related 5G and satellite regulatory and competition policy challenges and opportunities, longer term V and W band co sharing opportunities

#### **Satellite orbits**



#### LEO, MEO and GSO orbits- with thanks to Inmarsat

#### **GSO Orbital slots**



#### With thanks to the Boeing Corporation

#### **LEO ORBITS and satellites sizes**

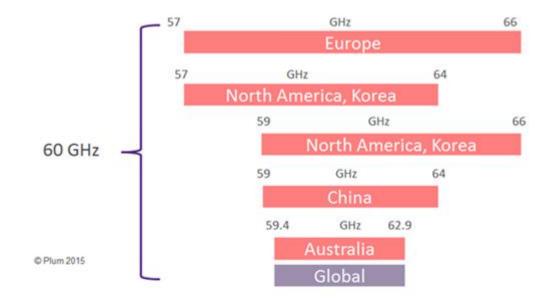
| Orbcomm    | 775 km  |
|------------|---------|
| Iridium    | 780 km  |
| OneWeb     | 1200 km |
| Globalstar | 1410 km |

| Pico Satellites (Cube sats?) | Nano Satellites | Micro Satellites | Macro Satellites |
|------------------------------|-----------------|------------------|------------------|
| <1 kg                        | < 10 kg         | < 500 kg         | ≥ 500 kg         |

Inmarsat I-5 Ka band satellites for example are (big) macro satellites with a launch mass of 6100 kg, the body height of a double decker bus, a solar array wing span of 33.8 metres generating 15 kilowatts of power and a xenon ion propulsion system for in orbit manoeuvring.

| L Band   | S Band   | C Band   | X Band   | Ku-Band    | K-Band    | Ka-Band    | V Band*                         | W Band*               |
|----------|----------|----------|----------|------------|-----------|------------|---------------------------------|-----------------------|
| 1-2 GHz  | 2-4 GHz  | 4-8 GHz  | 8-12 GHz | 12-18 GHz  | 18-27 GHz | 27-40 GHz  | 40-75 GHz                       | 75-110 GHz            |
| GPS      | MSS      | TV       | Military | Commercial | Military  | Commercial | Military and C<br>Automotive Ra | ommercial and<br>adar |
| Licensed | Licensed | Licensed | Licensed | Licensed   | Licensed  | Licensed   | Unlicensed                      |                       |

\* The asterisk against V and W Band is to remind us that the description E band is also sometimes used to describe a large sub band between 60 and 90 GHz. You may also come across Q band as a designation which like E band comes from the WR22 waveguide naming system. Q band covers from 33 GHz to 50 GHz (9.1 millimetres to 6 millimetre wavelength).


## **Bands Agreed For Study at WRC 2019**

| ITU WARC   | 2019 Ba  | nds agre        | eed for stud | ly for 5 | G        |              |               |             |             |              |               |                 |            |               |
|------------|----------|-----------------|--------------|----------|----------|--------------|---------------|-------------|-------------|--------------|---------------|-----------------|------------|---------------|
|            | K-Band   | ł               | Ka-Band      |          | V Band   |              |               |             |             |              |               | W-Band          | Total      |               |
| GHz        | 24.25    |                 | 31.8         | 37       |          | 40.5         | 42.5          | 45.5        | 47          | 47.2         | 50.4          | 66              | 81         |               |
|            | 27.5     |                 | 33.4         | 40.5     |          | 42.5         | 43.5          | 47          | 47.2        | 50.2         | 52.6          | 76              | 86         |               |
| GHz        | 3.25     |                 | 1.6          | 3.5      |          | 2            | 1             | 1.5         | 200 MHz     | 3            | 2.2           | 10              | 5          | 33.8 GHz      |
| FCC Upper  | Microw   | ave Flex        | cible Use    |          |          |              |               |             |             |              |               |                 |            |               |
| GHz        |          |                 | 27.5         | 37       | 38.6     |              |               |             |             |              |               |                 |            |               |
|            |          |                 | 28.35        | 38.6     | 40       |              |               |             |             |              |               |                 |            |               |
| GHz        |          |                 | 850 MHz      | 1.6      | 1.4      |              |               |             |             |              |               | 64              |            |               |
|            |          |                 |              |          |          |              |               |             |             |              |               | 71              |            |               |
|            |          |                 | Licensed     | Licens   | ed *     |              |               |             |             |              |               | 7 GHz           |            |               |
|            |          |                 |              | Ctrl)    | -        |              |               |             |             |              |               | Unlicensed      |            |               |
| GHz        |          |                 | t            | FLC      |          |              |               |             |             |              |               |                 |            | 10.85 GHz     |
|            |          |                 |              | πυ       |          |              |               |             |             |              |               |                 |            |               |
| Summary    | 33.8GF   | Iz of ITU       | J spectrum   | for stu  | dy at V  | VRC2019,     |               |             |             |              |               |                 |            |               |
|            | 10.85    | GHz of F        | CC UMFU s    | pectrur  | n for st | udy of whi   | ch 3 GHz is   | common (3   | 7-40 GHz)   |              |               |                 |            |               |
|            | FCC pr   | oposed          | lower band   | at 28 (  | GHz no   | t included   | as an ITU V   | VRC 2019 st | udy band th | hough adja   | ent to ITU    | study band      |            |               |
|            |          | -               |              |          |          |              |               |             | commercia   |              |               |                 |            |               |
| FCC Future | <u> </u> |                 | sed rule m   |          |          |              |               |             |             |              |               |                 |            |               |
| GHz        | 24.25    | 25.5            | 31.8         |          |          |              | 42            |             |             | 47.2         | 50.4          | 71              | 81         |               |
|            | 24.45    | 25.25           | 33.4         |          |          |              | 42.5          |             |             | 50.2         | 52.6          | 76              | 86         |               |
| GHz        | 200      | 200             | 1600         |          |          |              | 500 MHz       |             |             | 3 GHz        | 2.2 GHz       | 5 GHz           | 5 GHz      | 17.7 GHz      |
|            | MHz      | MHz             | MHz          |          |          |              |               |             |             |              |               |                 |            |               |
|            | FCC/ I   | ru              |              |          |          |              | FCC/ITU       |             |             | FCC/ITU      | FCC/ITU       |                 |            |               |
| GHz        |          |                 |              |          |          |              |               |             |             |              |               |                 |            |               |
|            | 1776     | H7 of EC        | Conoctrum    | for the  | du of v  | which 177    | GHz is comp   | non to ITU  | and ECC (24 | CHA DE CI    | 12 22 CH2     | 43 47 50 50     | 52 GHz 71  | -76 81-86 GHz |
| Summary    | 11.7 0   | <b>HZ 01 FC</b> | c speculum   | TOFSIL   | iay oi v | vinch 17.7 ( | 311215 001111 |             | and FCC (24 | i GHZ, ZS GI | 12, 32 GHZ, 4 | 42, 47-50, 50-3 | 52 GHZ, 71 | -10 91-90 GHT |

#### **Bands Agreed For Study at WRC 2019**

| 5G PPP   | E band cha | nneliza | ation and | coexisten | ce    |                       |          |       |       |                      |       |              |       |
|----------|------------|---------|-----------|-----------|-------|-----------------------|----------|-------|-------|----------------------|-------|--------------|-------|
| CEPT     |            |         |           |           |       |                       |          |       |       |                      |       |              |       |
|          | 71-76 (    | GHz     |           | 76-77     | 77-81 | 81-86 GHz             |          |       |       | 86 -92 GHz           |       | 92-95 GHz    |       |
|          |            |         |           | GHz       | GHz   |                       | Mob      | RX    |       |                      |       |              |       |
|          | 5G MOB     | TX?     |           |           |       |                       | 5G MO    | B RX? |       |                      |       | 5G TDD       |       |
| Guard    | Chann      | els     | Guard     | Narrow    | Wide  | Guard                 | Chann    | els   | Guard | Radio Astronomy Band | Guard |              | Guard |
| band     |            |         | band      | Band      | Band  | Band                  |          |       | band  |                      | Band  |              | band  |
|          |            |         |           | Long      | Short |                       |          |       |       |                      |       |              |       |
|          |            |         |           | Range     | Range |                       |          |       |       |                      |       |              |       |
|          |            |         |           | Radar     | Radar |                       |          |       |       |                      |       |              |       |
| 125      | 19 X 250   | MHz     | 125       |           |       | 125                   | 19 X 250 | 0     | 125   |                      | 125   | 11 X 250 MHz | 125   |
| MHz      |            |         | MHz       |           |       | MHz                   | MHz      |       | MHz   |                      | MHz   |              | MHz   |
| USFCC    |            |         |           |           |       |                       | US F     | CC    |       |                      |       |              |       |
| 4X       | (1.25 GHz  | channe  | els       |           |       | 4 X 1.25 GHz channels |          |       |       |                      |       |              |       |
| Legacy   | use        |         |           |           |       |                       |          |       |       |                      | •     |              | •     |
| 71-74 G  | Hz         | 74-76   |           |           |       | 81-84 G               | Hz       | 84-8  | 6 GHz |                      |       |              |       |
| Fixed    |            | As 71-  | 74 plus   |           |       | Fixed                 | •        |       |       |                      |       |              |       |
| Fixed sa | tellite    | Broad   | casting   |           |       | Fixed sa              | tellite  |       |       |                      |       |              |       |
| (space t | o earth)   | Broad   | casting   |           |       | (earth to             | o space) |       |       |                      |       |              |       |
| Mobile   |            |         | Mobile    |           |       |                       |          |       |       |                      |       |              |       |
| Mobile : | satellite  | Space   |           |           |       | Mobile satellite      |          |       |       |                      |       |              |       |
| (Space t | to earth)  | Resea   | rch       |           |       | (earth to             | o space) |       |       |                      |       |              |       |
| -        |            | (Space  | e to      |           |       | Space re              | esearch  |       |       |                      |       |              |       |
| 1        |            | earth)  |           |           |       | (Earth to             | o space) |       |       |                      |       |              |       |
| l .      |            |         |           |           |       | Radio as              | stronomy | ,     |       |                      |       |              |       |

### **Proximity to 60 GHz Wi-Fi**

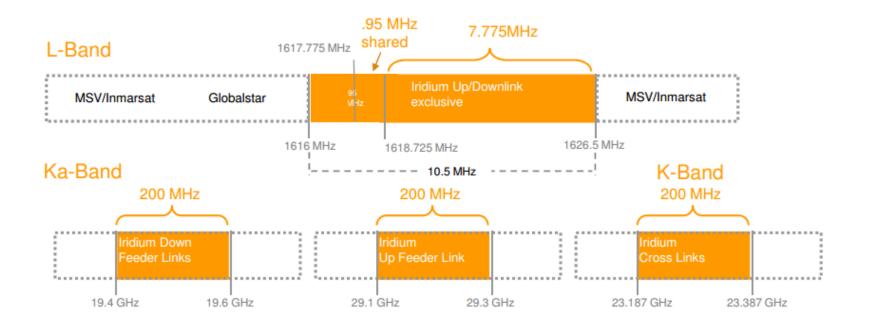


57-64 -71 GHz = 15 GHz



#### Wi-Fi 802.11ax

Impact of domestic bandwidth Amazon Echo and Google Home 50 Wi-Fi access points in a home

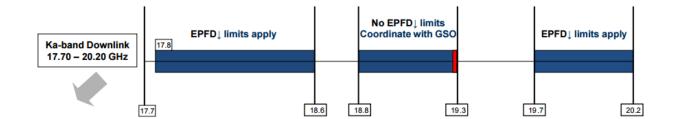

#### #1: What are the key differences between 802.11ac and 802.11ax?

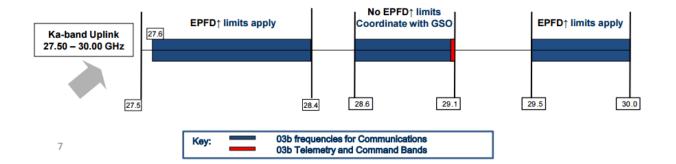
- Uplink MIMO: 802.11ac supports multiuser MIMO, but only in downlink mode. In contrast, 802.11ax adds uplink capability, so multiple users can upload video simultaneously.
- Modulation: 802.11ax has a higher modulation scheme, moving from 256 QAM to 1024 QAM, which translates to better throughput and 25% higher capacity with 10 bits per symbol.
- Capacity and efficiency improvements: 802.11ax uses OFDMA instead of OFDM, which allows FDD versus TDD as well as resource unit allocation within a given bandwidth. Subcarrier spacing is also reduced to 78.125 kHz, which is 25% of 802.11ac spacing, and the symbols are 4 times longer. When combined, all these changes mean that the system is more efficient and can upload or download multiple data packets simultaneously, rather than one at a time.
- Schedule-based rather than contention-based: In 802.11ax, the access point dictates when a device will operate, thus handling clients more efficiently. Resource scheduling also significantly reduces the power consumption during sleep time, which improves battery life for clients.

https://vertassets.blob.core.windows.net/download/7d705b86/7d705b86-8245-42b2-a160-863d22a8d720/802\_11ax\_5\_things\_to\_know.pdf

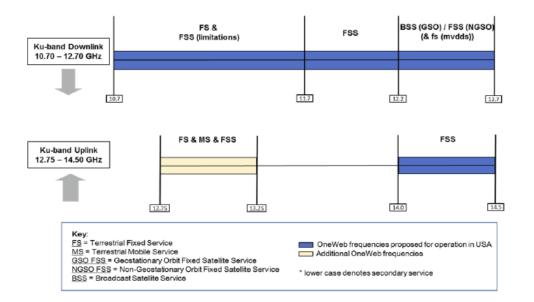
**Qorvo White paper** 

### **Existing LEO band plans -Iridium**



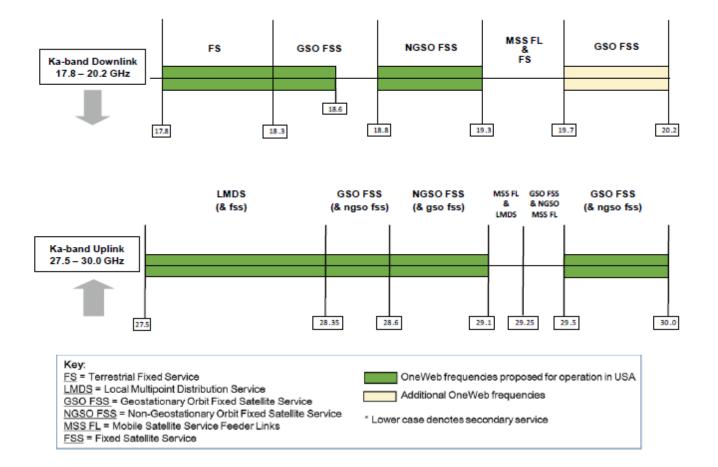


#### Globalstar 1610-1618 MHz

#### O3b - formerly the band plan for Teledesic

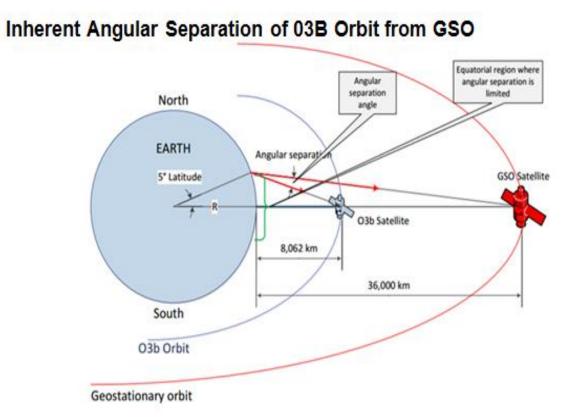

**O3b Frequency Plan** 



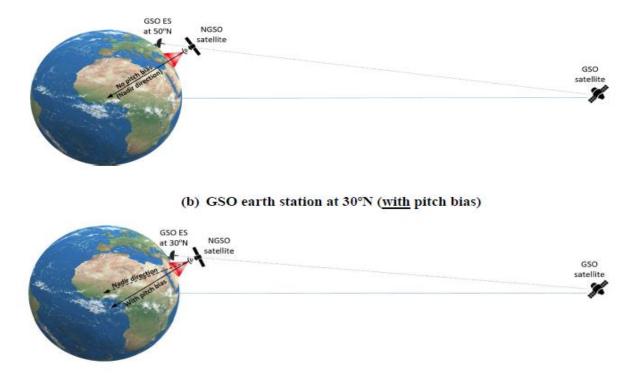





#### **OneWeb Ku-Band - formerly the band plan for Skybridge**

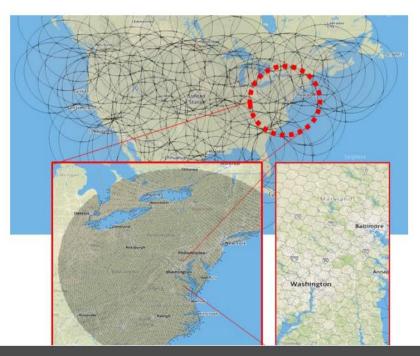






#### **OneWeb Ka-Band formerly the band plan for Skybridge**



#### **O3b Progressive Pitch MEO to GSO separation**



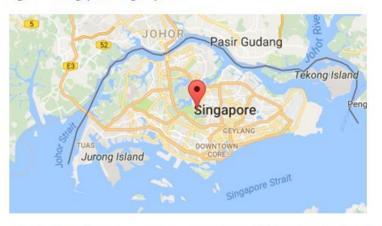

#### **OneWeb Progressive Pitch LEO to GSO separation**



So can 28 GHz and other K bands be shared with 5G terrestrial? LEO to MEO to GSO to 5G separation

#### Boeing V band progressive pitch+ fractional beam width




Boeing proposes a constellation of between 1,396 and 2,956 V-band satellites in 35-74 orbital planes at 1,200 km in altitude. Each satellite's footprint would be subdivided into thousands of 8-11-km-diameter cells, with each cell using up to 5 GHz of bandwidth. Boeing also wants regulators to clear the way for a mega-constellation in C-band, athough Boeing is not planning its own C-band constellation. Source: Boeing

37.5 to 42.5 GHz downlinking from spacecraft to terminals on Earth 47.2 to 50.2 GHz and 50.4 to 52.4 GHz for uplinking back to the satellites The industry rumour mill in 2017 suggested Apple was providing finance See also Google and OneWeb, Jeff Bezos (Amazon) and Blue Origin, Mark Zuckerberg (Facebook) and Eutelsat

#### **Terrestrial latency versus space latency**

| Time            | distance           |               |
|-----------------|--------------------|---------------|
| One second      | 300,000 kilometres | 186,000 miles |
| One Millisecond | 300 kilometres     | 186 miles     |
| One Microsecond | 300 metres         | 1000 feet     |
| One Nanosecond  | 30 centimetres     | One Foot      |

To put this in to a geographic perspective, Singapore is 50 kilometres from east to west and a radio or optical signal will take 166 microseconds to go from one end of this high tech island to the other. Malaysia coast to coast will take one millisecond.



#### Figure 3.1 Singapore at light speed

Australia from the east coast to west coast is 4000 kilometres so that's a coast to coast travel time of just over 13 milliseconds.


#### A reminder of last month's excellent webinar

IEEE Webinar September 20<sup>th</sup> , 2017

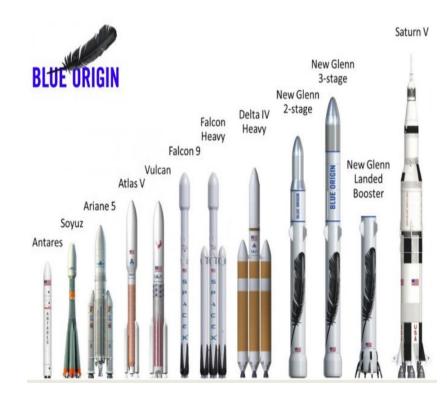
Dr. Amitabha Ghosh

## Self-backhauling Needed for Millimeter Wave Cellular

- New radio would likely require **dense deployments right from the initial phases** to get sufficient coverage (esp. for frequency > 20 GHz).
- Economically not feasible to provide fiber connectivity to each site until the new radio deployments become mature.
- · Self-backhauling is enabling multi-hop networks with shared access-backhaul resources.



#### Satellite latency for backhaul and direct connectivity


- **GSO satellites** orbit the earth at 36,000 kilometres above the equator. Radio waves go at the speed of light which is 300,000 km per second. For users on the equator communicating with a satellite directly overhead, the total distance, single hop (up and down) is 72,000 km so the time delay is **480 ms** for a round trip.
- **MEO network** (using O3b as an example) orbit height is 8,062 km. A typical single hop path involves sloping path lengths of 11,000km producing a single hop distance of 22,000 km producing a latency of 73 milliseconds. O3B claim a round trip latency of better than **150ms** based on a double hop distance of 11,250 + 11,250 + 11,250 + 11,250 km.
- LEGACYLEO networks the propagation delay is smaller still. Iridium's constellation operates at 780 kilometres, Orbcomm is a little higher at 825 kilometres and Globalstar is at 1,414 kilometres. The propagation delay experienced in a LEO satellite system varies as the satellites change position but will be 4.3 milliseconds per hop for Iridium, 4.5 milliseconds for Orbcomm and 7.8 milliseconds for Globalstar for 'bent pipe' applications with the satellite directly overhead. These figures should be doubled for round trip delay.

Australia West to East is 4000 kilometres (13 milliseconds), Africa North to South is 8000 kilometres (26 milliseconds)

• **NEWLEO networks** LEOSAT similar constellation to Iridium based on the same Thales space system platform but utilising 7 GHz of paired spectrum (3.5+3.5 GHz) at Ka band for individual user uplinks and downlinks (compared to 10+10 MHz of paired spectrum in L band available to Iridium) and optical inter satellite switching. The FCC filing is based on 120 to 140 satellites in a similar polar orbit to the Iridium Next Constellation. Focussed on delivering performance gain over long distance fibre based on the fact that radio and light waves in free space travel faster than radio and light waves in fibre. Over distances of more than 10,000 kilometres this speed advantage outweighs the additional route length (the earth to space, space to earth hop) providing a latency gain for high value applications such as high frequency trading, the oil and gas industries, corporate networking and government agencies (LEOSAT are working with the European Space Agency on 5G and satellite.

High count LEO always directly overhead=LOS= minimal surface scatter and absorption

#### New Rocket Age? New Rocket men?







Peter Beck Rocket lab USA

#### **New Space? New Delivery Economics?**

| Big Reusable rockets        |                                                                                | Small rockets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Small reusable space vehicles                                                    |
|-----------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Space X Falcon Heavy        | Blue Origin New Glen                                                           | Service and the service of the servi | 20                                                                               |
| 70 metres tall              | 82 metres tall                                                                 | 17 metres tall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Big enough for 10people                                                          |
| Liquid fuel                 | Liquid fuel                                                                    | Liquid fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Liquid nitrous oxidiser with<br>thermoplastic polyamide solid<br>fuel propellant |
| >200,000 kilonewtons        | >200,000 kilonewtons                                                           | 200 kilonewtons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 kilonewtons                                                                  |
| 50 tons to LEO orbit        | 50 tons to LEO orbit                                                           | 250 kg to 500 km sun<br>synch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 people to 110 kilometres                                                      |
| Falcon<br>Heavy<br>Falcon 9 | New Glenn<br>2-stage<br>New Glenn<br>2-stage<br>New Glenn<br>Landed<br>Booster |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |

Plus satellite innovations – electric satellites, new propulsion and power options