Joint MIMO-Radar-MIMO-Communications in the 5G Era

Kumar Vijay Mishra

National Academies Diamond Distinguished Fellow United States Army Research Laboratory

> Webinar IEEE Future Networks Webinar 25 August 2020

Cover Photograph Courtesy: Iowa Flood Center

About the Speaker

• Kumar Vijay Mishra

- National Academies Diamond Fellow, U. S. Army Research Laboratory
- Research Fellow, SnT, University of Luxembourg
- Technical Advisor, Hertzwell, Singapore

• Research interests:

Radar Signal Processing Electromagnetics Communications Remote Sensing
 Acknowledgements: Dr. M. R. Bhavani Shankar (SnT), Prof. M. Kobayashi (TUM), Prof. B. Ottersten (SnT), Prof. M. Saquib (UT Dallas), Prof. S. S. Ram (IIIT-D), Jiawei Liu (UT Dallas), S. H. Dokhanchi (SnT), and many collaborators

NOTE : Some pictures are taken from internet for illustrative purposes only; the copyright belongs to the owners

Motivation: Sensor-Driven Autonomous Vehicles

© Audi, https://www.autonomousvehicletech.com/articles/136-the-new-audi-a8-reaches-level-3

© Qualcomm, Tesla, Audi, <u>https://www.texas.aaa.com/automotive/advocacy/self-driving-cars-autonomous-vehicles-explained.html</u> © Hertzwell

© https://www.cypress.com/blog/corporate/driving-connected-car-revolution

Autonomous Cars : Sensors

Parameter	RADAR	LIDAR	Camera
Nature	Active	Active	Passive
Range	Long Upto 250m	Mid-range Upto 100m	Near range Upto 15-20m
Accuracy	 Descent 0.1 m, ±0.1 m/s H/V-FOV 30/50 	 Good 0.02 m 0.1deg 360deg H-FOV 	GoodRecognition at 15m
Observations	 Robust to harsh conditions Detecting Doppler Low cost Lack of semantic information 	High Accuracy3D MappingHigh cost	 Semantic information Poor performance in adverse weather, night No Doppler information

Modern Cars are ...

© IEEE, https://spectrum.ieee.org/transportation/advanced-cars/6-key-connectivity-requirements-of-autonomous-driving

Hence, Cars Generate Huge Data!

Performance Example Application

	Data volume	Cost per GB (€) -	Cost per GB (€)- high
	(GB)	low end (Jio, India)	end (Proximus, Belgium)
2018 cost*		0.2	17.7
2019 data volume per vehicle	0.053	0.0106	0.9381
2023 forecast cost**		0.009	0.83
2023 data volume per vehicle	8.33	0.07497	6.9139

* - https://www.statista.com/statistics/262747/worldwide-automobile-production-since-2000/

** - using Deloitte 3% depreciation

https://blogs.cisco.com/sp/connected-car-all-that-data-cost-and-impact-on-the-network, https://spectrum.ieee.org/transportation/advanced-cars/6-key-connectivity-requirements-of-autonomous-driving https://vtsociety.org/2018/02/vehicles-february-2018/

Spectral Crowding

Question

Cars need both high rate communications and accurate sensing Why is it difficult to have both?

• Modern radar systems operate in an increasingly crowded radiofrequency (RF) spectrum

Radar Band	VHF/UHF	L	S	С	X	Ku, K, Ka, V and W
Radar examples	FOPEN	ARSR	ASR, NEXRAD	TDWR	CASA	Automotive radars, cloud radars
Interference Source	TV/broadcast, 802.11ah/f	WiMAX, JTIDS	LTE	802.11 a/ac	LTE	802.11ad, mmwave comm

Shared Spectrum Access for Radar and Communications (SSPARC)

Outline

Photograph Courtesy: Hertzwell

SKC

mm-Wave Bands as a Possible Solution

- Higher bands \rightarrow Higher bandwidth
- Are all bands possible?
 - Propagation
 - Technology
- mm-Wave Band: 30 to 300 GHz
- Contiguous bandwidth of the order of GHz.

- T. S. Rappaport et all, "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!," IEEE Access, pp. 335-349, vol. 1, May 2013

- R. W. Heath Jr., "Vehicular Millimeter Wave Communications: Opportunities and Challenges," Wireless Networking and Communications Group, The University of Texas, Austin, 2015

- Y. Niu, Y. Li, D. Jin, L. Su, A. V. Vasilakos, "A Survey of Millimeter Wave (mmWave) Communications for 5G: Opportunities and Challenges", arXiv:1502.07228, submitted in February 2015

- A. Cardama, Ll. Jofre, J. M. Rius, J. Romeu, S. Blanch and M. Fernando, "Antennas," Edicions UPC, 2002

Millimeter-Wave Band

• Wide Bandwidth

- Comms: High data rates, more users
- Radar: Better Range Resolution
- Compact form factors
- High path loss, severe attenuation, short coherence times
- Prior works on spectrum sharing
 - Manage radar and comms units separately
 - Largely focused on cm-wave
 - Improve only one system
 - Monostatic automotive radar, infeasible hardware implementations, analysis restricted to single/point targets, micro-Doppler not included, etc.

mmWave Band : Impact on Design

Parameter	Observation	
 Poor received power 	 Large scale arrays → Massive MIMO 	
Higher noiseCompact antenna	• 64 Tx, 64 Rx array gives power gain of 120 dB	
placement	Small Form factors	
 High sampling rates 	 64 Tx, 64 Rx Sprint deployment is 700×400 mm Sparse channel, clustered model 	
Source:: <u>https://ustrademedia.com/global-massive-mimo-market/</u> , Ericsson https://www.ericsson.com/en/reports-and-papers/white-papers/advanced-antenna-systems-for-		

5g-networks

Sub-array gain

mmWave: Architecture Implications

- Large Arrays
 - Dedicated digital chain per antenna not feasible due to cost and power
 - Mixed analog-digital components
 - 1-bit sampling ADCs
- Wideband processing
 - High rate digital processing HW
 - High power consumption of analog and digital components
 - High cost
- Shorter Coherence times
 - Rapidly varying channel
 - Limits reliability of operation in highly mobile environments

MIMO Radar and MIMO Comms

Measure for Throughput : Shannon formula as a guide $C = n W \log(1 + SINR)$

MIMO Communications

- Multiple paths between transmitter and receiver
 - Different scatterers → Independent fading →
 Diversity in transmission
 - Multiple antennas \rightarrow more streams
- Intelligent spread of information across transmitters
- Diversity and multiplexing © First Fig: https://www.furukawa.co.jp/en/rd/review/fr049/fr49_03.pdf

MIMO Systems Are Ubiquitous!

- <u>IEEE 802.11n</u> (Wi-Fi),
- <u>IEEE 802.11ac</u> (Wi-Fi),
- <u>HSPA+</u> (3G),
- <u>WiMAX</u> (4G),
- Long Term Evolution (4G LTE).

Now : Massive MIMO for 5G!

MIMO is part of communication standards Millions of chipsets supporting MIMO

DVANCED

Logos are copyrights of respective bodies/ organizations/ standards

Joint Radar Communications : Topologies

- Spectral Coexistence
 - Radar and communications operate as separate entities
 - Devise strategies to mitigate the interference adaptively for either
 - Some information exchange
 - Minimal changes in standard, HW
- Spectral Co-design
 - New joint radio-frequency sensing and comms techniques
 - Single unit is employed
 - Opportunistic access of spectrum
 - Joint MIMO-Radar-MIMO-Communications (MRMC)
- Focus Applications: V2V, V2X, V2N

 $\ensuremath{\mathbb{C}}$ NI, 5G Massive MIMO Testbed: Mar 5, 2019

- Bi-static radar exploits bounced-off Tx signals from other vehicles
- Extends sensing area to NLOS w.r.t. Rx
- Communications is more susceptible to interference from surroundings than the direct path
- Bi-static system is more general

Spectrum Sharing Topologies

Radar and Comm Design Considerations

- Two Systems: Which performance metric to use?
 - Communications : Quality of Service, Data Rate, ...
 - Radar : Dependent on Radar Tasks
 - RMSE, RoC, ...
 - Unified Criteria?
 - Mutual Information

Received Signal Y

Mutual Information for Comm : *I*(*X*; *Y*|*H*)

Mutual Information for Radar : *I*(*Y*; *H*|*X*)

- Transmitter Degrees of Freedom
 - Co-existence
 - Different antennas, frequency, coding, transmission slots, power, or polarization, possibly Channel State Information
 - Co-design
 - Waveform
- Receiver Degrees of Freedom
 - Multiple antennas, Channel State Information

Signal Processing Approaches

- Design of new waveforms
 - Multiple performance metrics/ constraints
 - System oriented constraints
 - Fewer antennas excited, constant modulus
 - Resource allocation
- Adapting waveform parameters to mitigate interference
 - Precoder/Beamformer design using SINR maximization
- Receiver
 - Multitude of beamformer designs
 - Successive Interference Cancellation
 - Multiple antenna-based processing
 - Subspace estimation, Eigenspace processing

© TrellisWare Technologies

Two waveforms for mm-Wave MRMC

- PMCW
 - Viable alternative to FMCW for high-res radars
 - No linear frequency ramp (and simpler on-chip implementations) for range estimation
 - Sharp, thumbtack ambiguity function; MIMO radar in code domain; embedded comms
- OFDMA
 - Differentiates users in both time and frequency (unlike OFDM in time-only)
 - Stable performance in multipath fading and relative simple synchronization
 - High dynamic range and efficient receiver processing based on FFT

PMCW-JRC vs OFDMA-JRC

(Dokhanchi, Shankar, Mishra and Ottersten, IEEE TAES 2019)

Waveform type	Resolution	Max. throughput per CPI	Max. unambiguous range	Characteristics
PMCW-JRC	$\Delta f_D = \frac{1}{t_{\rm CPI}}$ $\Delta R = \frac{c}{2B}$ $\Delta \theta = \frac{\pi}{N_{\rm r}}$	<u>T_{CPI}(1-μ)</u> t _b	ct _b	 Higher range resolution in comparison with OFDMA-JRC Larger maximum unambiguous range in comparison with state-of-the-art mono-static JRC
OFDMA-JRC	$\Delta f_D = \frac{1}{t_{CPI}}$ $\Delta R = \frac{c}{2B_u}$ $\Delta \theta = \frac{\pi}{N_r}$	$\frac{T_{\rm CPI}(1-\mu)N_c}{T_{\rm sym}}$	$\frac{c}{\Delta f}$	 Higher throughput in comparison with PMCW-JRC Larger maximum unambiguous range in comparison with state-of-the-art mono-static JRC
c: speed	c: speed of light, B: total available bandwidth, B_{12} user bandwidth, Δf : sub-carrier intervals.			

mm-Wave JRC Tx-Rx Design

(Mishra, Shankar, Koivunen, Ottersten and Vorobyov, IEEE SP Magazine, 2019)

- Multiplexing strategy required to enhance waveform identifiability
- The receive processing consists of coarse and super-resolution steps
- JRC super-resolution algorithm has lower complexity than 2D-FFT and 2D-MUSIC

mm-Wave JRC Performance

(Mishra, Shankar, Koivunen, Ottersten and Vorobyov, IEEE SP Magazine, 2019)

- A comparison of estimation errors in the coupled parameter range for OFDMA-JRC and Doppler for PMCW-JRC
- When SNR is above a threshold, re-estimating coupled parameter using all subcarriers after comm removal enhances the recovery
- At low SNR, radar-only frames/carriers are a more optimal choice

Statistical/Distributed MRMC

(Liu, Mishra, Saquib, 2020: Co-Designing Statistical MIMO Radar and In-band Full-Duplex Multi-User MIMO Communications)

Summary

- MIMO technology is essential to enable spectrum sharing at mm-Wave band
- Joint MRMC
 - Waveform design is a challenge
 - Both radar- and comms-centric solutions possible
 - Advanced receiver processing to estimate parameters
- Coexistence and co-design topologies
- Colocated and Statistical MRMC
- Adapt existing waveforms or design new waveforms with customized constraints

More:

Overview Article: K. V. Mishra, Bhavani Shankar M. R., B. Ottersten, V. Koivunen, and S. Vorobyov., "Toward millimeter wave joint radar-communications: A signal processing perspective," IEEE Signal Processing Magazine, vol. 36(5), pp. 100-114, 2019

Tutorial: K. V. Mishra, M. R. Bhavani Shankar, and M. Kobayashi, "Information Extraction in Joint Millimeter-Wave State Sensing and Communications: Fundamentals to Applications," ICASSP 2020, RadarConf 2020, RADAR 2020

MS/PhD internships and career opportunities: grow@hertzwell.com

THANK YOU!