5G Enhanced Mobile Broadband Radio interface on mmWave – Hardware Architecture and role of Silicon Technologies

Dr. Anirban Bandyopadhyay, Director, RF Business Development, GLOBALFOUNDRIES, Inc., New York

Outline

1 Introduction to 5G

2 mmWave 5G Radio Access Technology Overview

- 3 mmWave 5G Radio Interface Architecture
- 4 Differentiated Silicon Technologies for mmWave 5G
- 5 Summary & references

Outline

1 Introduction to 5G

- 2 mmWave 5G Radio Access Technology Overview
- 3 mmWave 5G Radio Interface Architecture
- 4 Differentiated Silicon Technologies for mmWave 5G
- 5 Summary & references

What is 5G?

5G is the next Generation cellular standard to support **faster data rate**, **lower latency** & **more number of connected devices**

5G Usage Scenario

mMTC : massive Machine Type Communication

5G is a superset in terms of usage scenarios, not backward compatible with 4G

Do we really need 5G?

"I got so fed up with dropped calls and no service, I bought my own cell tower and take it where ever I go."

Source: IWPC presentation, 2017

Data traffic density and higher data rate demand will always be on the rise

Key Problems faced by current 4G connections

• Cell edge coverage

• Peak & average data rate / throughput

Concept of always being connected remains a myth

4G Frequency Bands

E- UTRA Band	Duplex- Mode	f (MHz)	Common name	Included in (subset of) Band	Uplink (UL) BS receive UE transmit (MHz)	Downlink (DL) BS transmit UE receive (MHz)	Duplex spacing (MHz)	Channel bandwidths (MHz)	E- UTRA Band	Duplex- Mode	f (MHz)	Common name	Included in (subset of) Band	Uplink (UL) BS receive UE transmit (MHz)	Downlink (DL) BS transmit UE receive (MHz)	Duplex spacing (MHz)	Channel bandwidths (MHz)	E- UTRA Band	Duplex- Mode	f (MHz)	Common name	Included in (subset of) Band	Uplink (UL) BS receive UE transmit (MHz)	Downlink (DL) BS transmit UE receive (MHz)	Duplex spacing (MHz)	Channel bandwidths (MHz)
1	FDD	2100	IMT	65	1920 – 1980	2110 - 2170	190	5, 10, 15, 20	25	FDD	1900	Extended PCS blocks A-G		1850 - 1915	1930 – 1995	80	1.4, 3, 5, 10, 15, 20	42	TDD	3500			3400 -	- 3600	N/A	5, 10, 15, 20
2	FDD	1900	PCS blocks A-F	25	1850 - 1910	1930 - 1990	80	1.4, 3, 5, 10, 15, 20	26	FDD	850	Extended CLR		814 - 849	859 -	45	1.4, 3, 5, 10, 15	43	TDD	3700			3600 -	- 3800	N/A	5, 10, 15, 20
3	FDD	1800	DCS		1710 - 1785	1805 -	95	1.4, 3, 5, 10, 15,				SMR			894			44	TDD	700	APT		703 -	- 803	N/A	3, 5, 10, 15, 20
4	FDD	1700	AWS blocks A-F	66	1710 - 1755	2110 -	400	1.4, 3, 5, 10, 15,	27	FDD	800	(adjacent to band		807 - 824	852 - 869	45	1.4, 3, 5, 10	45	TDD	1500	L-Band (China)		1447 ·	- 1467	N/A	5, 10, 15, 20
~		1700	(AWS-1)			2155	400	20				5)						46	TDD	5200	U-NII		5150 -	· 5925	N/A	ļ
5	FDD	850	CLR	<i>26</i>	824 - 849	869 - 894	45	1.4, 3, 5, 10	28	FDD	700	APT		703 - 748	758 – 803	55	3, 5, 10, 15, 20	47	TDD	5900	U-NII-4 (V2X)		5855 -	- 5925	N/A	
7	FDD	2600	IMT-E		2500 - 2570	2620 - 2690	120	5, 10, 15, 20	29	FDD ^[A 1]	700	Lower SMH blocks D/E		N/A	717 - 728	N/A	3, 5, 10	48	TDD	3600	CBRS		3550	- 3700	N/A	
8	FDD	900	E-GSM		880 - 915	925 - 960	45	1.4, 3, 5, 10	30	FDD	2300	WCS blocks A/B		2305 -	2350 -	45	5, 10	65	FDD	2100	Extended IMT		1920 -	2110 -	190	5, 10, 15, 20
10	FDD	1700	Extended AWS	66	1710 - 1770	2110 - 2170	400	5, 10, 15, 20						2315	2360								2010	2200	ļ	ļ
11	FDD	1500	Lower PDC		1427.9 - 1447.9	1475.9 - 1495.9	48	5,10	31	FDD	450			452.5 - 457.5	462.5 -	10	1.4, 3, 5	66	FDD	1700	Extended AWS		1710 - 1780	2110 -	400	1.4, 3, 5, 10, 15,
12	FDD	700	Lower SMH blocks A/B/C		699 - 716	729 - 746	30	1.4, 3, 5, 10	32	FDD ^[A 1]	1500	L-Band (EU)		N/A	1452 - 1496	N/A	5, 10, 15, 20	00	100	1700	1/AWS-3)		1/10 1/00	2200 ^[3]	-00	20
13	FDD	700	Upper SMH block C	+	777 - 787	746 - 756	-31	5, 10	33	TDD	2100	IMT	39	1900	- 1920	N/A	5, 10, 15, 20	67	FDD ^[A 1]	700	EU 700		N/A	738 - 758	N/A	5, 10, 15, 20
14	FDD	700	Upper SMH block D		788 - 798	758 - 768	-30	5,10	34	TDD	2100	IMT		2010 -	- 2025	N/A	5, 10, 15	68	FDD	700	MF 700		698 - 728	753 - 783	55	5 10 15
17	FDD	700	Lower SMH blocks	12	704 - 716	734 - 746	30	5, 10	35	TDD	1900	PCS (Uplink)		1850	- 1910	N/A	20		100	,			000 /20	100 100		0, 10, 10
18	FDD	850	Japan lower 800	26	815 - 830	860 - 875	45	5, 10, 15	36	TDD	1900	PCS (Downlink)		1930	- 1990	N/A	1.4, 3, 5, 10, 15,	69	FDD ^[A 1]	2600	IMT-E (Duplex		N/A	2570 -	N/A	5
19	FDD	850	Japan upper 800	26	830 - 845	875 - 890	45	5, 10, 15									20				spacing)			2620		
20	FDD	800	EU Digital Dividend		832 - 862	791 - 821	-41	5, 10, 15, 20	37	TDD	1900	spacing)		1910 -	- 1930	N/A	5, 10, 15, 20							1995 -	295 -	
21	FDD	1500	Upper PDC		1447.9 – 1462.9	1495.9 – 1510.9	48	5, 10, 15	38	TDD	2600	IMT-E (Duplex Spacing)	41	2570	- 2620	N/A	5, 10, 15, 20	70	FDD	2000	AWS-4		1695 - 1710	2020	300 ^[4]	5, 10, 15
22	FDD	3500			3410 -	3510 -	100	5, 10, 15, 20	39	TDD	1900	DCS-IMT gap		1880	- 1920	N/A	5, 10, 15, 20	71	FDD	600	US Digital Dividend		663 - 698	617 - 652	-46	5, 10, 15, 20
				+	1626.5 -	1525 -	<u> </u> '	/	40	TDD	2300			2300	- 2400	N/A	5, 10, 15, 20									
24	FDD	1600	L-Band (US)		1660.5	1559	-101.5	5, 10	41	TDD	2500	BRS / EBS		2496	- 2690	N/A	5, 10, 15, 20	72	FDD	450	PMR/PAMR Europe		451 - 456	461 - 466	10	1.4, 3, 5

Bands are very fragmented with passband 20-200 MHz allocated among many carriers Max Channel Bandwidth 20MHz

Network Capacity Improvement

Further enhancement in capacity/ peak data rate needs larger channel BW and/or higher Spectral Efficiency

Outline

1 Introduction to 5G

- 2 mmWave 5G Radio Access Technology Overview
- 3 mmWave 5G Radio Interface Architecture
- 4 Differentiated Silicon Technologies for mmWave 5G
- 5 Summary & references

5G will have both sub 6GHz & mmWave Bands

Why mmWave?

Contiguous Spectrum availability

- much more than sub 6GHz

Higher Channel bandwidth (defined up to 400MHz, can be more) and hence data rate

High frequency / small wavelength

- Smaller antenna, makes large arrays possible

Highly directive beam enables spatial multiplexing (spectral efficiency)

Less interference and more efficient use of Tx/ Rx power

High link loss

- Atmospheric, Rain, foliage, building material absorption

Distance between Access point & User Equipment (UE) has to be small (< 100-200m)

5G mmWave Spectrum Candidates

Source: GSA , June, 2018

Beamforming & Steering by Phased Array Antenna System

By locking each beam to an UE, a spatial multiplexing is achieved to increase Spectral efficiency and improve Signal-to-Interference Ratio

4G vs mmWave 5G Radio Access Network (RAN)

mmWave enables excellent spatial selectivity and hence high spectral efficiency & low interference

Capacity Improvement using mmWave 5G

Channel BW 50-400MHz

(4G max. 100MHz using 5X CA)

Spatial Multiplexing using Beamforming (8-16 Beams) At least 5-10X of 4G ~10-20Gb/s

(4G 4x4 MIMO provides 4 data streams)

Might use lesser order Modulation to start with (64QAM instead of 4G 256QAM)

Timeline for 5G deployment

mmWave-based enhanced mobile broadband in UE will be widespread during phase 2 of 5G launch

Outline

1 Introduction to 5G

- 2 mmWave 5G Radio Access Technology Overview
- 3 mmWave 5G Radio Interface Architecture
- 4 Differentiated Silicon Technologies for mmWave 5G
- 5 Summary & references

Current Cellular Radio Interface Architecture

- Today's most high tier LTE handsets have LNA's in RFFE to increase Rx sensitivity
- Transceiver is a single-chip solution currently most system on 28nm, QTI has 14FF based transceiver for higher CAT (16+) 4G handsets
- CAT 16+ 4G (and sub 6GHz 5G) Handsets will need many LO generators to support 4x4 MIMO, high order CA 18

Different Beamforming Architectures

EIRP, Rx sensitivity, available form factor, power budget determine array size and beamforming architecture for a particular mmWave application

Transmission Lines Loss: Distance to Ground Plane

- Transmission line loss increases with frequency
 - Skin effect
 - Eddy current loss in substrate
- Thick Top metals (more than skin depth)
- Ground plane in BEOL prevents fields from entering substrate
- Distance from Ground Plane helps
- Higher substrate resistivity up to a level (~2000hm-cm) helps

• For large 2D, linear array or where Transceiver is several cm away from FEM, the mmWave signal should be converted to IF / baseband in the nearest proximity of BF chip to avoid huge loss due to long interconnect

• In case of monolithic analog BF + Up/down converter, the on-chip interconnect loss is a key parameter

Outline

1 Introduction to 5G

- 2 mmWave 5G Radio Access Technology Overview
- 3 mmWave 5G Radio Interface Architecture
- 4 Differentiated Silicon Technologies for mmWave 5G
- 5 Summary & references

EIRP Definition

Equivalent Isotropic Radiated Power

(EIRP) is the product of transmitter power and the antenna gain in a given direction relative to an isotropic antenna of a radio transmitter.

It is the power that an isotropic (omnidirectional) antenna would have to transmit to match the directional reception

Normally the EIRP is given in dBi, or decibels over isotropic.

$$EIRP = P_T - L_C + G_a$$

Where,

EIRP(Effective Isotropic Radiated Power) = Output power of a signal when it is concentrated into a smaller area by the antenna

 P_T = Output power of the transmitter (dBm)

$$L_{C} = Cable Loss (dB)$$

 $G_a = Antenna Gain (dBi)$

Impact of Semiconductor Technology on Array Size

Source: Anokiwave webinar

Technology with better Rx noise figure and higher per element Tx power output will need fewer array elements for a target Rx antenna G/T and Tx antenna EIRP, respectively

Technology with better FOM ⇒ smaller array ⇒ LOWER COST & AREA

EIRP Example IBM/Ericsson 28GHz 64-Element Phased Array in 130nm SiGe (8HP)

Package top 64 dual polarized antennas

Measured 64 Element Progressive Element Turn On Without Calibration

© 2017 IEEE International Solid-State Circuits Conference

7.2: A 28GHz 32-Element Phased-Array Transceiver IC with Concurrent Dual Polarized Beams and 1.4 Degree Beam-Steering Resolution for 5G Communication

39 of 54

Silicon Technologies for mmWave 5G Radio Interface

Technology	Key Features	Device Cross-Section
RF CMOS (65nm - 28nm)	 High-volume logic process technology base with multiple foundries Comprehensive IP offerings for System-on-Chip (SOC) Traction in mmWave markets: WiGig 802.11ad (60GHz), 77GHz auto radar 	
PD-SOI (45nm)	 PD-SOI = Partially Depleted Silicon on Insulator High-speed w/ lower junction capacitance, isolation & stacking 180nm RF SOI extensively used in cellular & Wi-Fi FEM Early adoption in 5G & Sat Comm for 45nm PDSOI with highest Ft/Fmax & optimum BEOL stack 	Metal Wiring Transistor Oxide Insulator Silicon Wafer
FD-SOI (28nm - 22nm)	 FD-SOI = Fully Depleted Silicon-on-Insulator Delivers FinFET-like performance and power-efficiency at 28/22nm cost Transistor body-biasing for flexible trade-off between performance and power Enables applications across mobile, IoT and mmWave markets 	NMOSPMOSImage: Sector of the
SiGe (130nm - 90nm)	 SiGe = Silicon Germanium Based on higher performance & power tolerant HBT (vs FET) Technology optimized for micro and mmWave applications: backhaul, E-band links, Sat Comm, automotive radar, A&D 	Dielectric Copper SiGe # B B C Tungsten SIG Deep Trench Isolation N Collector N* Subcollector Removed P Substrate

26

Bulk, PDSOI & FDSOI FET Devices

-2.0V to +2.0V Body-Biasing

Bulk NFET Partially Depleted Silicon-On-Insulator (PDSOI) NFET Fully Depleted Silicon-On-Insulator (FDSOI) NFET

- Depending on thickness above Buried Oxide, Silicon under the Gate can be partially or fully depleted of carriers
- Both PDSOI & FDSOI enable stacking of FET for high voltage(Power) tolerance

Essential Elements for a Silicon Technology for mmWave

High-performance technology

- Higher performance enables design flexibility & techniques for a more robust design
- f_T / f_{MAX} should be at a minimum 3x and preferably > 5x application frequency
- RF FOMs (Self Gain, Gain efficiency, Ft/Fmax, Nfmin, 1/f noise) appropriate for target mmWave applications

Low loss BEOL (metal and dielectric stack)

- Thick top metal(s)
- Distance to substrate
- Substrate resistivity

Well-modeled (including EM simulation) mmWave technology

- mmWave model-to-hardware correlation is key to minimize design iterations

Reliability and Ruggedness

- Devices and components proven reliable and rugged over the voltage, temperature ranges

Power Amplifier – Psat, P1dB, Efficiency

> PA Efficiency increases with Input power level

PA linearity requirement and signal PAPR for the application determine the operating point back off from saturation

> PA Efficiency at operating point matters

45RFSOI BEOL Is Optimized to Provide Benefits for Millimeter Wave Operation

Raised thick Cu levels:

- High Q inductors and transformers
- Low loss transmission lines
- High Q MIMs; high density MIMs or APMOMs
- Dual thick Cu levels provide design flexibility

High resistivity trap rich substrate:

- Improves back-end-of-line (BEOL) losses due to parasitics (~0.8dB reduction in TL IL per mm @ 28 GHz)
- Reduces harmonics due to trap rich substrate for improved linearity

BEOL IL comparison with different substrates

45RFSOI : High Performance mmWave Switches

Measured SPDT IL versus Frequency -0.4 Model -0.5 Mea. S21 Mea, S12 -0.6 -0.1 SPDT IL (dB) -0.8 -1 -1.1 -1.2 -1.3 -1.4 – 0

20

25

Frequency (GHz)

30

35

5

10

15

- RonCoff ~90 fS \bullet
- 28 GHz SPDT 3 stack
 - IL 0.76 dB
 - Iso: 23 dB
 - Pmax: 23 dBm
 - One tone IIP3 49.5 dBm
- HR substrate provides improved parasitics over bulk

Number of stacks	IL @ 28/ <mark>50</mark> GHz (dB) W/Open	Iso @ 28/ <mark>50</mark> GHz (dB) W/Open	IP1dB (dBm) at 14 GHz	IIP3 (dBm) at 14 GHz
3	0.76/1.17	23.91/17.06	30	49.5
4	0.91/1.18	24.14/17.94	32	48.7
5	0.98/1 <mark>.13</mark>	24.81/1 <mark>9.16</mark>	33	48.4

50

45

45RFSOI differentiated silicon results: 23dBm Psat@42% PAEmax

28 GHz LNA/PA/switch silicon results

ΡΑ	PAE at Psat	Psat	Gain	
GF Single ended PA	41.5%	16.2 dBm	13 dB	
Differential PA** (26 GHz)	42%	42% 23 dBm		
Differential PA** (26 GHz)	37% 22.2 dBm		21 dB	
LNA	Gain	IIP3	NF	
GF Reference 45RFSOI designs	13 dB	4.3 dBm	1.3 dB	
Switch	Insertion Loss	Isolation	OIP3	
GF Reference 45RFSOI designs (RonCoff = 90 fs, 1 V)	0.65 dB	26 dB	46 dBm	

** Georgia Tech

Silicon Verified Results

22FDX[®] Technology: Optimized for mmWave SoC

22FDX Enables Lowest Power Consumption for mmWave Applications

For mmWave LNA, mixer circuits, 22FDX has 30% higher performance and 16% lower current than 28nm

For mmWave PA circuits, 22FDX far outperforms any other CMOS node

Source: Globalfoundries test results

22FDX® based 5G 28 GHz differential PA

High efficiency, high gain amplification

MPW2217 PA (2-Stack) Schematic

- All designs metal stack # 11
- Ruggedness stress tested at VSWR 5:1; Tests ongoing

Measured	Measured				
3-Stack PA	2-Stack PA				
27.8	29				
15.9	15.8				
12.4	12.7				
17.4	15.8				
18.2	16.4				
18.3	20.8				
30.2	41.0				
-10.6	-9.9				
-2.1	-1.2				
18 dBm	15 dBm				
	Measured 3-Stack PA 27.8 15.9 12.4 17.4 18.2 18.3 30.2 -10.6 -2.1 18 dBm				

Source: Globalfoundries test results

PA is the fulcrum around which 5G architecture revolves and 22FDX enables BIC PA performance for Integrated RF SOC

Measured switch & LNA performance on 22FDX®

		E	
			SO
netø2			
			22
		E	

Freq.	28 GHz	40 GHz
S21 (dB)	-0.95	-1.25
S11 (dB)	-13	-11
S21 (dB) OFF	-25.3	-21.5
IIP3 (dBm)	45	44

3-stacked switch architecture with power handling up to 23 dBm @ 4:1 VSWR

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

VD

22FDX[®] mmWave FETs

- <10 mW power consumption</p>
- NF 2.6 dB @ 28 GHz in 1st generation
- NF <2 dB @ 28 GHz in 2nd gen

Source: Globalfoundries test results

5G mmWave switches based on mmWave layouts with increased gate pitch are targeted to have ~ 0.6-0.7 dB insertion loss at 28 GHz and better power handling due to low capacitances

"Beats Best GaAs pHEMT LNAs" Prof. Gabriel Rebeiz, UCSD

SiGe HBT Breakdown (BV_{cbo}) Saturating at 4 V for $F_t > 500$ GHz

- GF continues to push scaling of SiGe HBTs
- Optimizing vertical (intrinsic) & lateral (extrinsic) profiles allows one to gain F_t BV margin

Avoids the need for multi-stacking approach used for FETs ⇒ improves PAE for PA

Source: GLOBALFOUNDRIES

130nm & 90nm SiGe Technologies - HBT's offer High F_t/F_{max} at low power

- SiGe (8XP) offers F_{max} of 350 GHz; SiGe (9HP) offers F_{max} of 370 GHz
- CMOS logic supporting thin and thick oxide for 1.2 V / 1.5 V, 1.8 V / 2.5 V / 3.3 V
- Thick top level metals for improved transmission line loss

Source: GLOBALFOUNDRIES

High Fmax and breakdown voltage of SiGe makes it an ideal technology for high Psat, Gain, PAE, & linearity of PA with high reliability.

Paving the way to 5G/mmWave: 45RFSOI & 22FDX®

FEM-Centric Designs: highest performance with architecture flexibility

45RFSOI*

- High Ft / Fmax
- Hi-Res substrate for high power handling (>20 dBm) and low loss
- Low-loss BEOL
- Low density, medium leakage logic

Integration-Centric Designs : low system cost and low SOC power consumption

- 22FDX
- High Ft / Fmax and high GM/I
- Power handling (< 20 dBm)
- Low-loss BEOL
- Low power and high density logic

SiGe8HP/8XP PA for Psat > 23dBm

Generic architecture : mmWave 5G radio interface for UE– chip partitioning options

Chip partitioning & technology adoption will depend on Tx power, power efficiency, cost and available form factor

Chip partitioning option: radio interface for mmWave 5G infrastructure

Technology solution will be determined by TX power, #arrays (system cost) & system power dissipation.

Comparison of 22FDX[®] and 28 nm for beamforming

Analysis for 16QAM UL/DL, 100MHz RF BW

All 22 nm
FD-SOI power
consumption results
based on measured
results of silicon
blocks

	Technology	28 nm HKM		22 nm FD-SOI					
sults	Architecture	ABF, High IF, N=8	ABF, High IF, N=8	DBF, DC, N=8	ABF, High IF, N=4	DBF, DC, N=4			
	PA Pout (dBm)	7	7	7	13	13			
	Pdc (mW) (Tx/RX 0.3/0.7)	506	415	360	315	289			

~20% reduction in power dissipation w.r.t. 28 nm bulk for analog high IF beamforming,

The power advantage of 22FDX is even better for digital beamforming

Outline

1 Introduction to 5G

- 2 mmWave 5G Radio Access Technology Overview
- 3 mmWave 5G Radio Interface Architecture
- 4 Differentiated Silicon Technologies for mmWave 5G
- 5 Summary & references

Summary

□We have covered the enhanced Mobile Broadband (eMBB) usage scenario of 5G

The use of mmWave carrier frequency will enable large channel bandwidth and high spectral efficiency

□The phased array technique to be used for mmWave 5G will enable Silicon technologies to play key roles in mmWave 5G systems

□We highlighted partially depleted (PD) and fully depleted (FD) SOI technologies along with SiGe BiCMOS technologies as differentiated Silicon technology choices for mmWave 5G radio interface.

References

https://www.qualcomm.com/media/documents/files/making-5g-nr-a-commercial-reality.pdf

https://www.globalfoundries.com/tech-resources/document-center

<u>https://www.etsi.org/technologies-clusters/technologies/5g</u>

□ <u>https://spectrum.ieee.org/static/the-race-to-5g</u>

https://www.ericsson.com/en/white-papers/advanced-antenna-systems-for-5g-networks

http://www.microwavejournal.com/blogs/25-5g/post/30882-g-is-coming-what-to-expect-and-why

<u>https://ims2018.org/technical-program/workshops-and-short-courses#2018-06-15</u>

Please feel free to contact me at anirban_bandyo@ieee.org with any questions or follow up