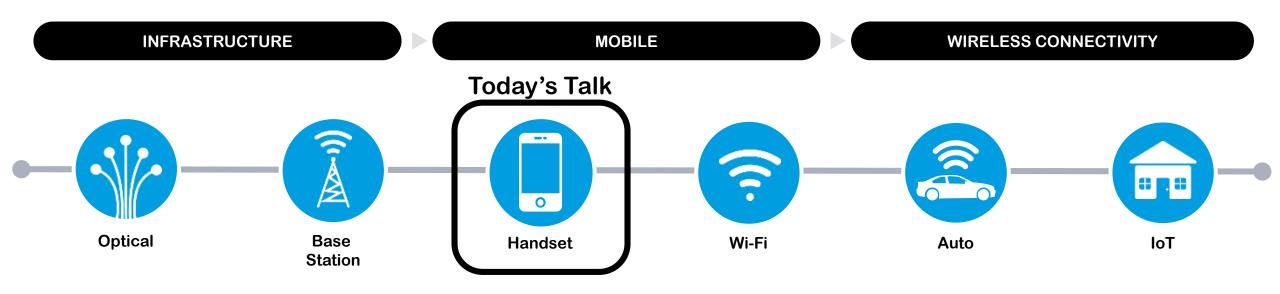
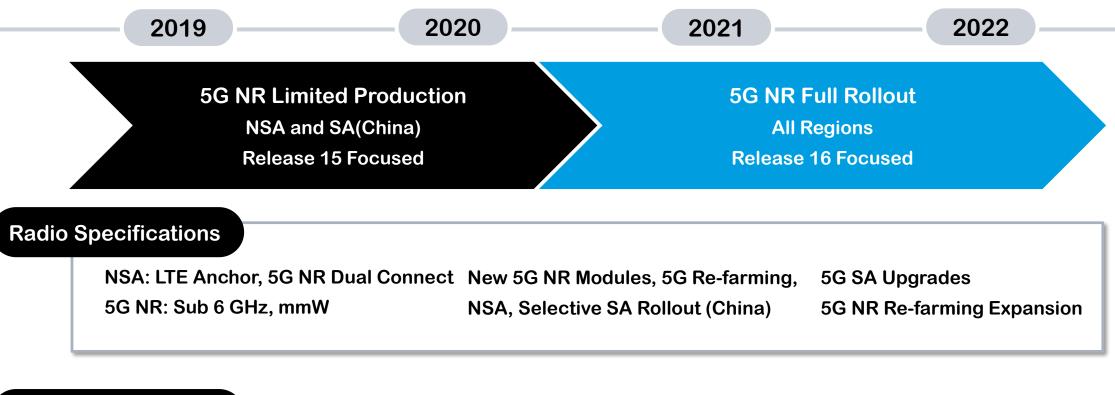


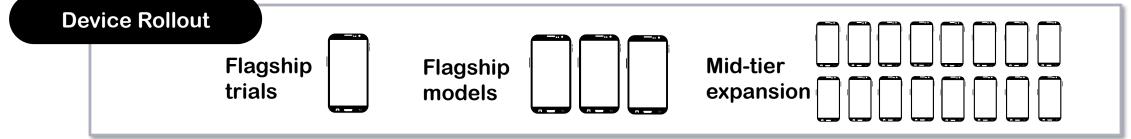
1. 5G and its Evolving Market

2. 5G in the Mobile Handset

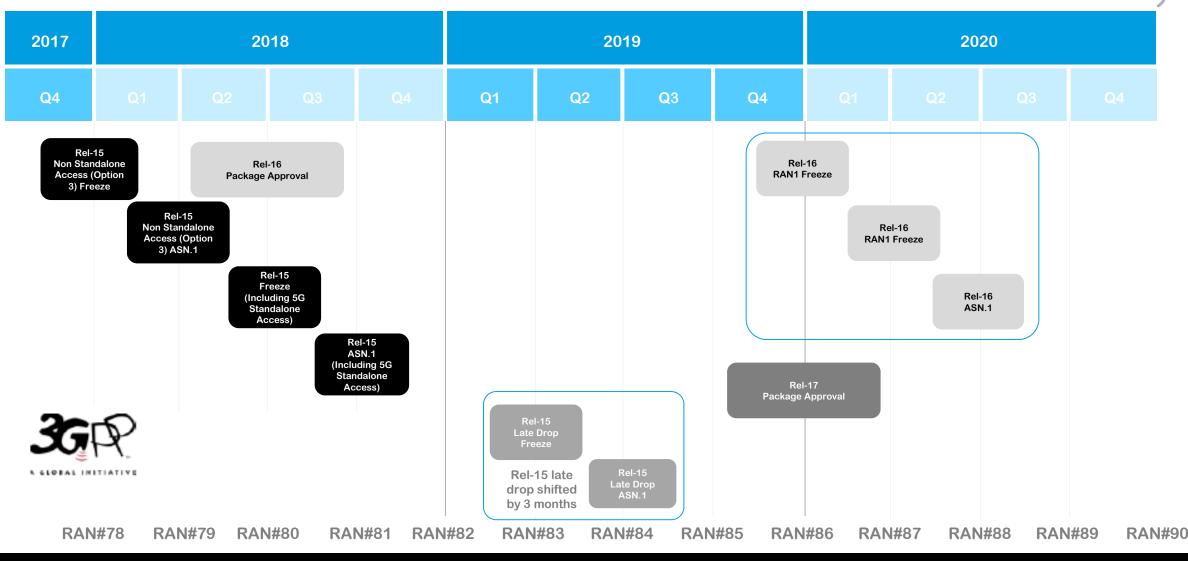

3. Front End Module Design Impacts

Qorvo: Delivers 5G RF Solutions—End to End

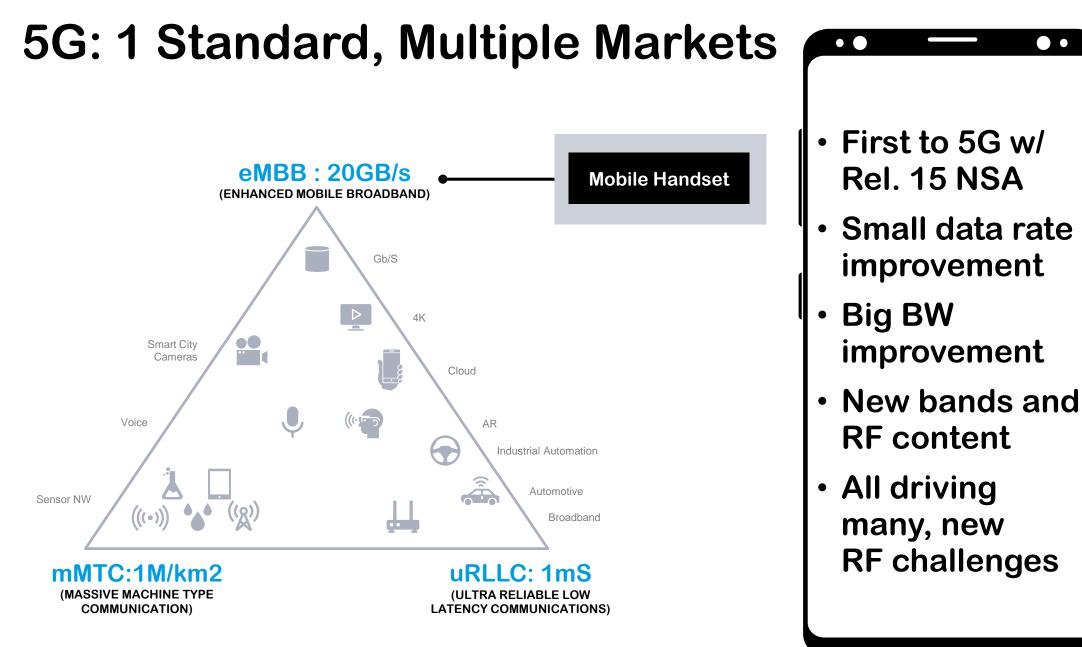



- Enabling 5G base station deployments today, helping develop 5G mobile devices of tomorrow
- Supporting robust 5G design activity for all 5G bands, Sub-6 GHz and mmW applications
- Playing a key role in defining 5G architectures with Qorvo's envelope tracking, antenna tuning, filters and phase array technology

Momentum for Full Scale 5G Handset Rollout

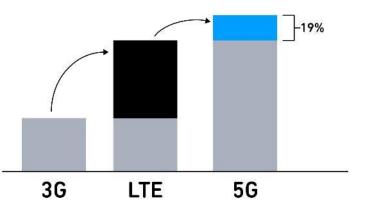


3GPP Release Schedule Through Rel. 16


Release 15 finally finishing up, Release 16 close behind

5

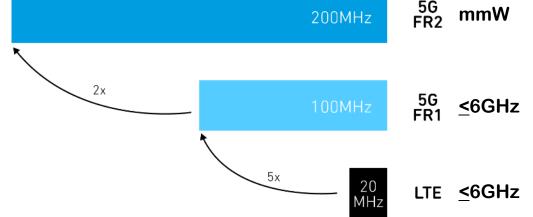
Source: ITU-R IMT 2020 requirements



5G Promises of Data Improvement

5G NR downlink compared to 4G LTE

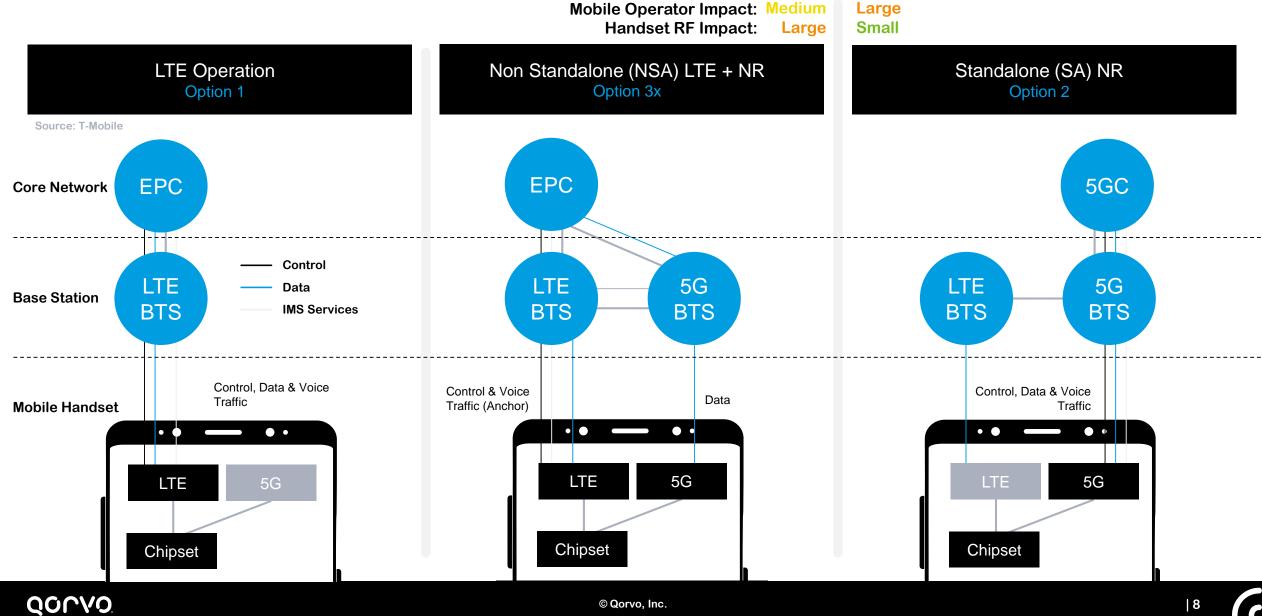
Nominal benefit from 5G standard


Standards Driven Downlink Data Rates

FR1 Example: DL 100 MHz FDD channel, strong signal, 4x4 MIMO, 256QAM, variable SCS

- LTE DL max 1.96 Gbps (5CC CA, 1CC=20MHz) = Baseline
- 5G NR DL max is 2.34 Gbps (273 RB, 30 kHz SCS) = 19.4% gain

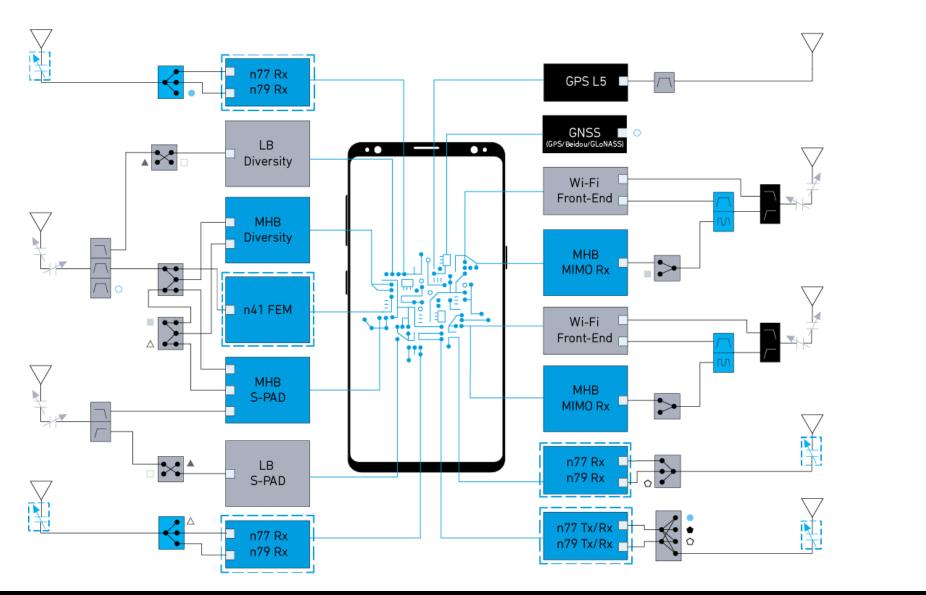
FR1 Example: DL TDD 4x4 MIMO, 256QAM, 30 kHz SCS


- 20 MHz channel max is 0.281 Gbps (51 RB) = Baseline
- 100 MHz channel max is 1.50 Gbps (273 RB) = 5.3x gain

FR2 Example: DL TDD 4x4 MIMO (4 layers), 256QAM, 120 kHz SCS

- 100 MHz channel max is 1.50 Gbps (66 RB) = Baseline
- 200 MHz channel max is 3.0 Gbps (132 RB) = 2x gain
- 400 MHz channel max is 6.0 Gbps (264 RB) = 4x gain

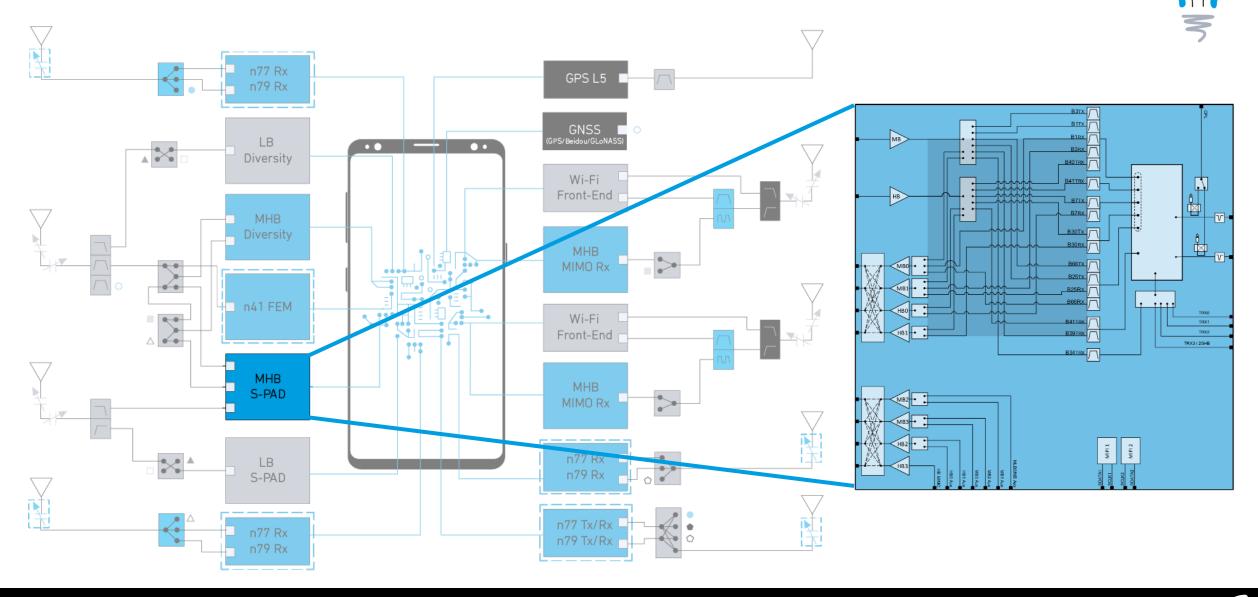
Progressive Transition of 5G Deployment


Key RF Challenges for 5G Handsets

Included in 3GPP Release 15 and 16 specifications

·• •·	CHALLENGE	SOLUTION
Bands	New bands with unprecedented bandwidth; accelerated LTE band re- farming	n77/n78 and n79 FE and DRx modules
Modes	New waveforms with variable sub carrier spacing and dynamic power reduction + LTE	Upgraded LTE FEMs and DRx modules for 5G NR
Signal Routing	LTE Anchor + 5G NR = Dual uplink connection	High performance Antennaplexers
Switching Speed	Standard requires reduced latency and SRS	Antenna tuning and routing

Impact of 5G on Global Handsets

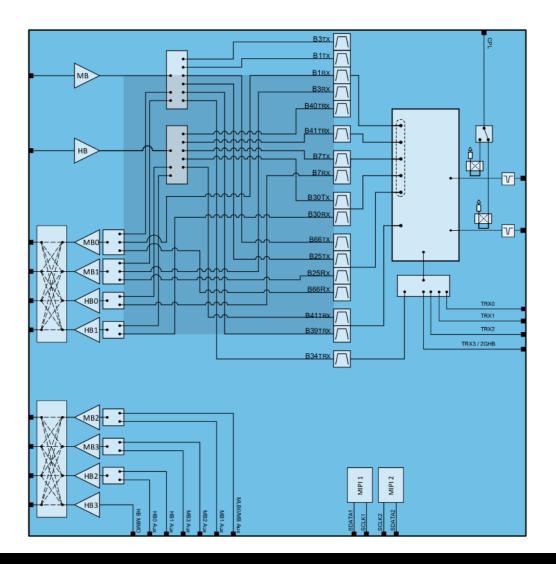

5G's RF Impact

зĿэ

Deep Dive: 5G Impact on Mid/High Band S-PAD

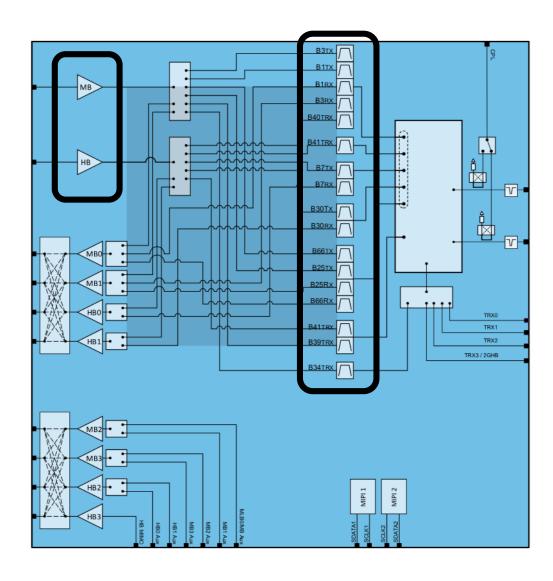
5G

| 11


Mid/High Band Feature/Scope Over Time

			LTE Advanced	5 G
Features	2015	2017	2019	2020
Numbers of RF paths	14	22	>100	>300
Number of filter-band paths	7	12	18	19
Maximum of filters combined at one node for Carrier Aggregation	2	6	8	15
Critical LTE Isolation specs	2	36	51	74
Max bandwidth of transmit signal	20MHz	40MHz	60MHz	100MHz
PA Max Frac Bandwidth	15.6%	14.6%	16.9%	16.9%
Power Class 2 (3dB higher power)	No	No	Yes	Yes
Antenna Switch Integration	Νο	Yes	Yes	Yes
LNA integration	No	No	Yes	Yes
Envelope Tracking or Average Power Tracking (ET or APT)	ΑΡΤ	ET	ET	ET & APT
Number of filter-band paths	7	12	18	19
Incremental Size Change	Baseline	+25%	+50%	-35%

5G MB/HB S-PAD Example Architecture



QOLAO

- 56

- Construction:
 - 25 Die in 4 Semiconductor Processes:
 - GaAs HBT, SOI, Bulk CMOS, BAW
 - 10 Layer laminate
 - MicroShield[™] self-shielding
- Functions:
 - Mid Band and High Band Power Amplifiers (PAs) for Transmit (Tx)
 - Switch/Filtering for Carrier Aggregation Modes
 - Low Noise Amplifiers (LNA) for Receive (Rx)
 - Antenna Switch for 2 Antenna connections
 - Dual MIPI Controllers

5G Impact: 2 Key Areas Requiring Upgrades



- Power Amplifiers (PAs):
 - More Power
 - More Linearity
 - Many more points in between
- Filters:
 - Increased Carrier Aggregation (CA) Cases
 - While handling this increased
 Tx Power

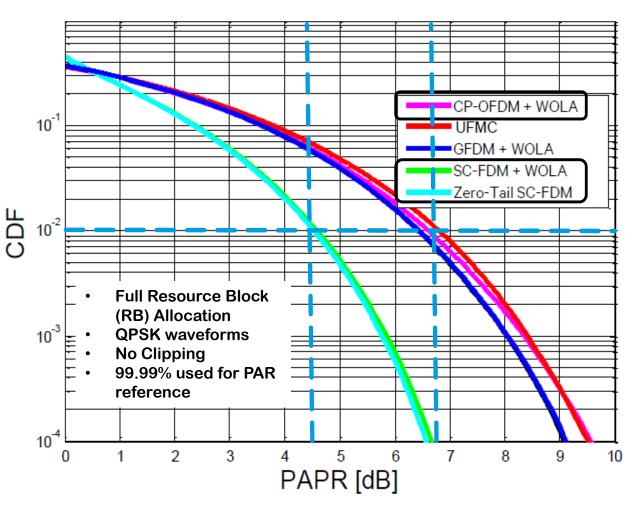
5G Waveforms: Significant Impact on the UL

Significant impact on the UL

- 4G and 5G both based on OFDM:
 - 4G LTE used SCFDMA in the and OFDMA in the DL
 - 5G NR uses both CP-OFDM and DFT-s-OFDM in the UL and keeps CP-OFDM in the DL
 - DFT-s-OFDM is the same as LTE's SCFDMA
 - CP-OFDM is the same as LTE's OFDMA
- Why use (CP-) OFDM?
 - CP-OFDM ranks best on the performance indicators that matter most in 5G – compatibility with multi-antenna technologies, high spectral efficiency, and low implementation complexity.
- CP-OFDM is well-controlled in the time domain
 - Important for latency critical applications and TDD deployments
 - More robust to phase noise and Doppler than other waveforms
- However, OFDM has two drawbacks: high PAR on the UL^L and transceiver complexity
 - Thus why DFT-s-OFDM is used for coverage-limited scenarios

Evaluation of CP-OFDM

	Performance Indicators	Goodness of Fit	DL Req.	UL Req.	
1	Spectral efficiency	High	High	High	
1	MIMO Compatibility	High	Very High	Very High	
	Time localization	High	High	High	
4	Transceiver complexity	Low	Very High	High	
-	Flexibility/Scalability	High	High	High	
	Robustness to frequency selective channel	High	High	High	
/	Robustness to time selective channel	Medium	High	High	
/	Robustness to phase noise	Medium	High	High	
	Robustness to synchronization errors	Medium	Medium	Medium	
\rightarrow	PAPR	Medium (can be reduced)	Low	High	
	Frequency Localization	Low (can be enhanced)	Medium	High	

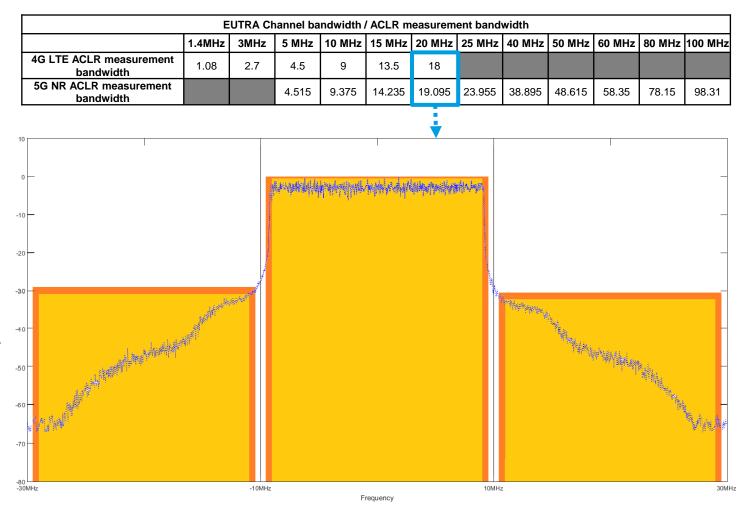


| 17

5G Waveforms: Peak to Average Ratio (PAR)

Representative waveforms for comparison of CP-OFDM and DFT-s-OFDM

- CP-OFDM waveform has 2-2.5dB higher PAR than SC-FDMA/DFT-s-OFDM waveforms
- Further, as the complexity of the IQ modulation increases the PAR also increases
 - QPSK \rightarrow 16QAM \rightarrow 64QAM \rightarrow 256QAM
- Result: PA designed to handle such large swings of Power (and underlying voltage) at the collector; Robustness needed

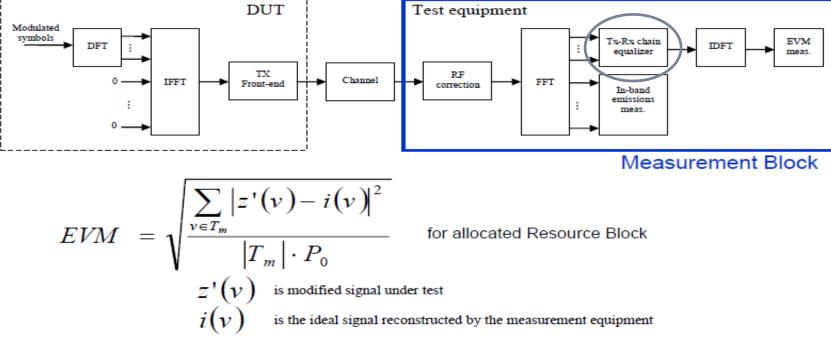


ACLR measurement has subtle changes in 5G

- EUTRA ACLR is changed from LTE:
 - Same spec (-30dBc), but...
 - Different measurement BWs in NR vs. LTE
 - Integrated channel power is not much different
 - Integrated adj. channel power is a little higher
 - End result: 5G ACLR is tougher
- 5G UTRA ACLR is very similar to LTE
 - Same specs (-33, -36)
 - Difference in int. BW for channel power
 - 5G waveform occupies more BW
- Results: 5G UTRA should be slightly more difficult than 4G UTRA

QONVO

LTE and NR EVM

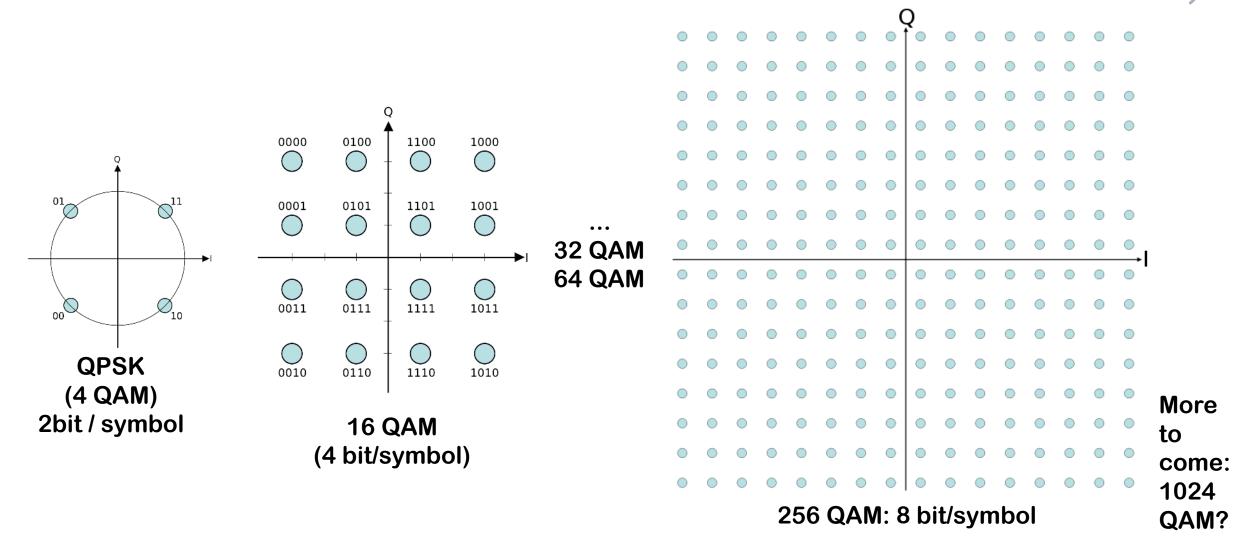

EVM in LTE/NR is different than other communication standards

• NR EVM is a lot like LTE EVM:

- **EVM** calculated per resource block •
- EVM includes a frequency domain equalizer (after FFT) •

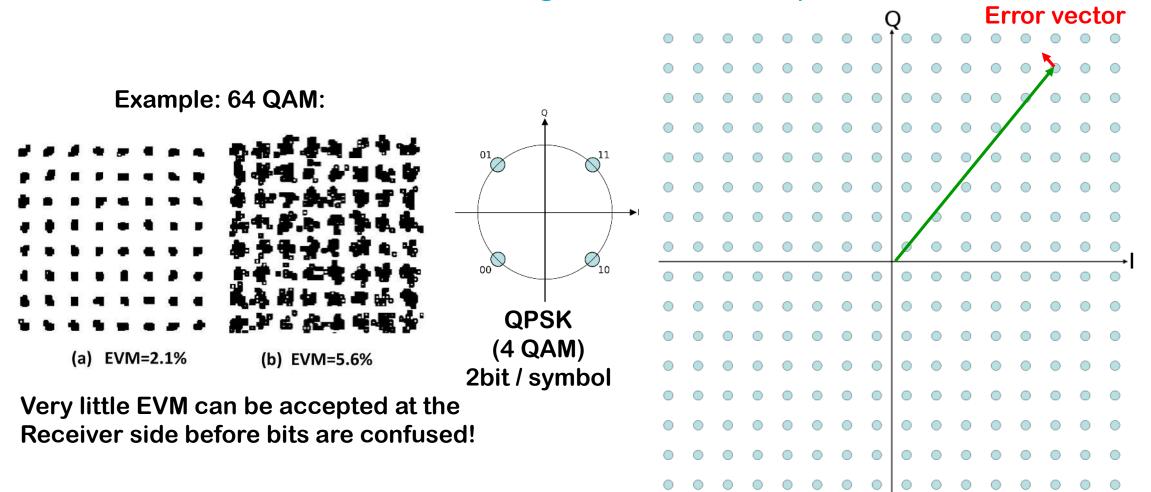
3GPP 5G EVM Specification:

	Unit	Average EVM Level
Parameter		_
Pi/2-BPSK [or BPSK]	%	[25]
[BPSK or] QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.5



New 5G features: Higher Order UL Modulations

- 55



Focus on EVM for Higher Order Constellations

(each sub-carrier is modulated using these schemes)

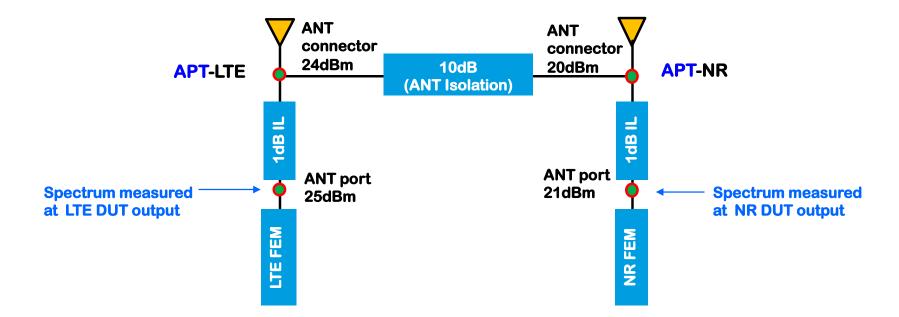
Result: For both 64, and *especially* 256 QAM UL EVM is key spec !

Multiple 5G PA Operating Points to Consider

Increased complexity with variables of waveform, modulation, RB allocation

Modulation		MPR				
	Edge RB allocations	Outer RB allocations	Inner RB allocations	Dominant Factor		
DFT-s-OFDM PI/2 BPSK	≤ 3.5 ¹	≤ 1.2 ¹	≤ 0.2 ¹			
	0.5 ²	0.5 ²	02	ACLR		
DFT-s-OFDM QPSK		≤ 1	0			
DFT-s-OFDM 16 QAM		≤2	≤ 1	ACLR & EVM		
DFT-s-OFDM 64 QAM		≤ 2.5				
DFT-s-OFDM 256 QAM	M 256 QAM 4.5					
CP-OFDM QPSK		≤ 3	≤ 1.5	ACLR		
CP-OFDM 16 QAM	≤ 3		≤2	ACLR & EVM		
CP-OFDM 64 QAM		EVM				
CP-OFDM 256 QAM	AM ≤ 6.5					
 NOTE 1: Applicable for UE operating in TDD mode with PI/2 PBSK modulation and UE indicates support for UE capability [powerBoosting-pi2BPSK] and if the IE powerBoostPi2BPSK is set to 1 and 40% or less slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79. The reference power of 0 dB MPR is 26 dBm. NOTE 2: Applicable for UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79 and if the IE powerBoostPi2BPSK is set to 0 and if more than 40 % of slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79. 						

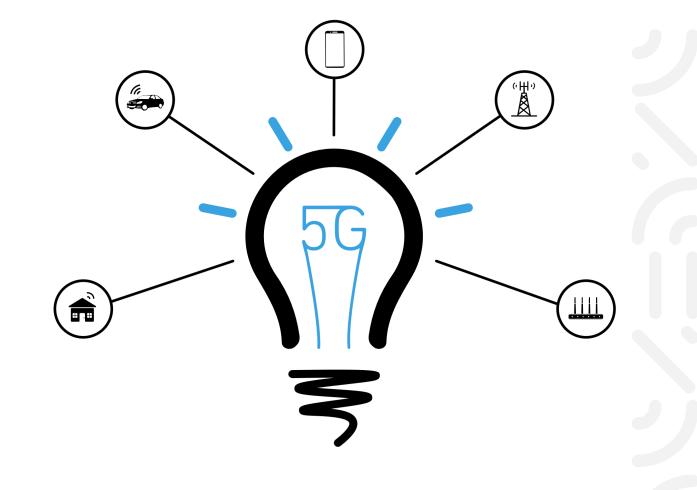
Table 6.2.2-1 Maximum power reduction (MPR) for power class 3



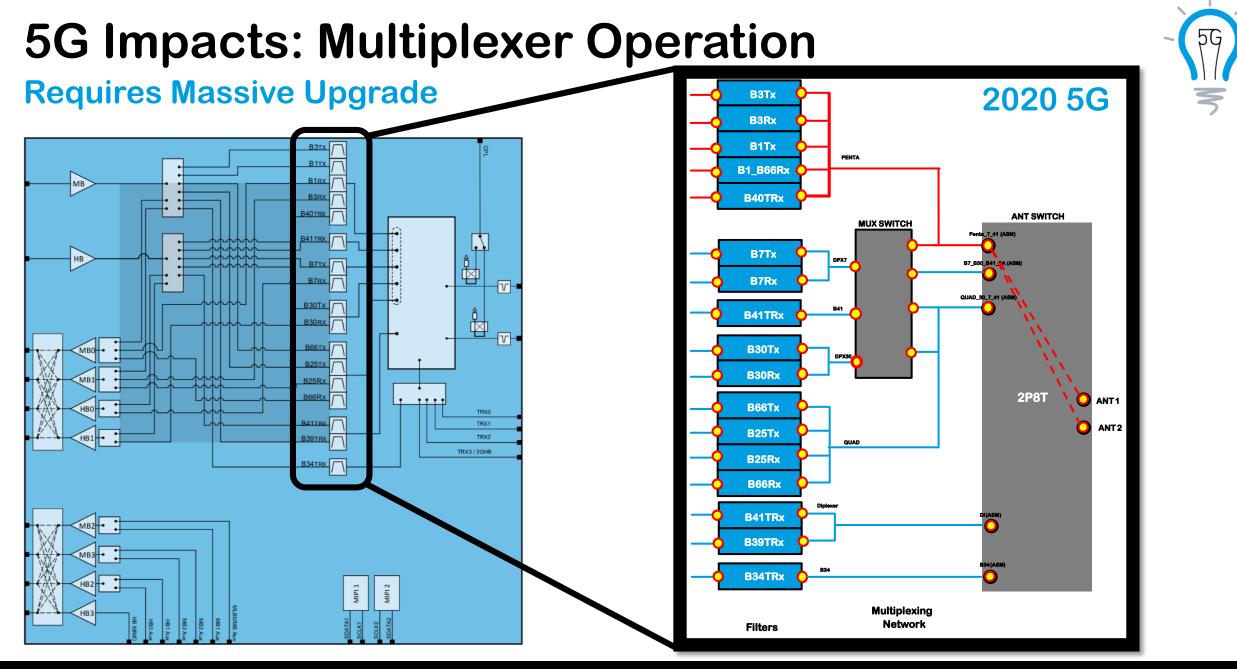
5G's NSA EN-DC Drives UL Challenges

LTE's B1+B3 dual UL was never widely deployed

- EN-DC= EUTRA + NR Dual Connection
 - LTE "control" anchor and NR "data" signal UL from the handset simultaneously
- 2 PAs transmitting at the same time, from antennas in near proximity!
- 2 Areas to watch: Total Power and rIM3 interference leading to OOB emissions

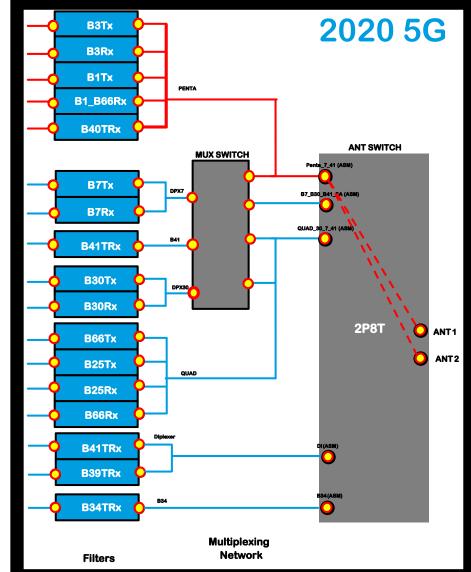


B41+n41: Difference in ET and APT


Spectrum 💥	LTE-	ET:20d	Bm ; NR	APT:2	0dBm			Spectrum 🔆	LTE	E-APT:	20dBm ;	NR-AP	T:20dBı	n 🖳
Ref Level 25.40	dBm Offset 2	5.40 dB 🛛 🕅	Mode Auto Sweep					Ref Level 0.00 (dBm Offset 25.	40 dB	Mode Auto Sweep			
STOP								STOP						
🔵 1Rm Max							1	●1Rm Max						
20 deimit Check		FAIL					Ĩ	Limit Check		PASS				
P<200								-10 080200						
10 dBm								-20 dBm						
0 dBm								-20 uBill				L .		
							ŀ	-30 dBm	(<u> </u>		
-10 dBm								-40 dBm						
-20 dBm			Λ					-40 uBill						
	г	4		1 <u>h</u>				-50 dBm		p. Remain Company	y wind with the state of the second			
-30 dBm								-60 dBm						
-40 dBm											U			
		I WWW M	- 5 I A.(1 I I I I I I I I I I I I I I I I I I I				-70 dBm						
-50 dBm								-80 dBm						
-60 dBm		0						-80 06111						
								-90 dBm						
-70 dBm														
CF 2.61 GHz			691 pts		Spa	n 600.0 MHz 🖉		CF 2.61 GHz			691 pts		Spar	n 600.0 MHz
Spectrum Emissio	on Mask	Standard	I: ENDC 80MHzSE	Mmask Att10d	В) í	Spectrum Emissi	on Mask	Standa	rd: ENDC 80MHzSI	EMmask Att10d	В	
Tx Power	-41.89 dBm	Tx Ban	idwidth 3.840 MI	Hz –	RBW 1.00)0 MHz		Tx Power	-42.54 dBm	Tx Be	andwidth 3.840 M	Hz	RBW 1.00	0 MHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit	l l	Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
-300.000 MHz	-125.000 MHz	1.000 MHz	2.48369 GHz	-50.57 dBm	-8.68 dB	-20.57 dB		-300.000 MHz	-125.000 MHz	1.000 MHz	2.48456 GHz	-50.37 dBm	-7.83 dB	-20.37 dB
-125.000 MHz	-120.000 MHz	1.000 MHz	2.48650 GHz	-48.57 dBm	-6.68 dB	-23.57 dB		-125.000 MHz	-120.000 MHz	1.000 MHz	2.48950 GHz	-51.06 dBm	-8.52 dB	-26.06 dB
-120.000 MHz	-45.000 MHz	1.000 MHz	2.54015 GHz*	-9.00 dBm*	32.88 dB*	4.00 dB*		-120.000 MHz	-45.000 MHz	1.000 MHz	2.54015 GHz	-18.69 dBm	23.85 dB	-5.69 dB
-45.000 MHz	-41.000 MHz	1.000 MHz	2.56850 GHz	-45.62 dBm	-3.74 dB	-35.62 dB		-45.000 MHz	-41.000 MHz	1.000 MHz	2.56850 GHz	-47.41 dBm	-4.87 dB	-37.41 dB
-41.000 MHz	-40.000 MHz	30.000 kHz	2.56900 GHz	-55.84 dBm	-13.96 dB	-31.84 dB		-41.000 MHz	-40.000 MHz	30.000 kHz	2.56900 GHz	-57.05 dBm	-14.51 dB	-33.05 dB
40.000 MHz	41.000 MHz	30.000 kHz	2.65000 GHz	-62.32 dBm	-20.43 dB -8.01 dB	-38.32 dB -39.90 dB		40.000 MHz 41.000 MHz	41.000 MHz 45.000 MHz	30.000 kHz 1.000 MHz	2.65000 GHz	-63.14 dBm	-20.60 dB	-39.14 dB -39.65 dB
41.000 MHz 45.000 MHz	45.000 MHz	1.000 MHz	2.65100 GHz 2.65980 GHz	<u>-49.90 dBm</u> -29.85 dBm	-8.01 dB 12.04 dB	-39.90 dB -16.85 dB		41.000 MHz 45.000 MHz	45.000 MHz	1.000 MHz 1.000 MHz	2.65100 GHz 2.65980 GHz	-49.65 dBm -34.08 dBm	-7.11 dB 8.46 dB	-39.65 dB -21.08 dB
120.000 MHz	120.000 MHz	1.000 MHz	2.65980 GHz	-29.85 dBm	-9,96 dB	-16.85 dB		45.000 MHz 120.000 MHz	120.000 MHz	1.000 MHz	2.65980 GHz	-34.08 UBIII -51.34 dBm	-8.80 dB	-21.08 dB -26.34 dB
125.000 MHz	300.000 MHz	1.000 MHz	2.86255 GHz	-51.26 dBm	-9.37 dB	-20.05 dB		125.000 MHz	300.000 MHz	1.000 MHz	2.89476 GHz	-51.05 dBm	-8.51 dB	-20.54 dB

Results: Same PA that needs to operate in ET for single channel efficiency needs to be capable of APT in *certain* EN-DC combinations

5G: Filter/Multiplexer Impacts

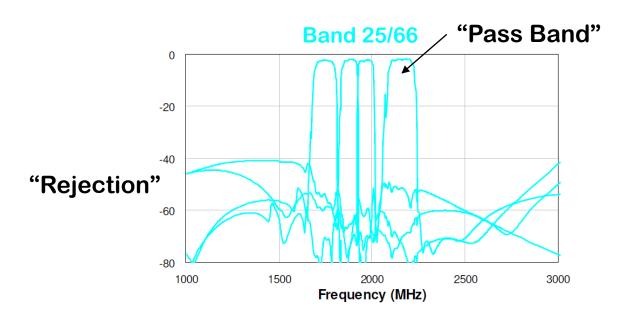


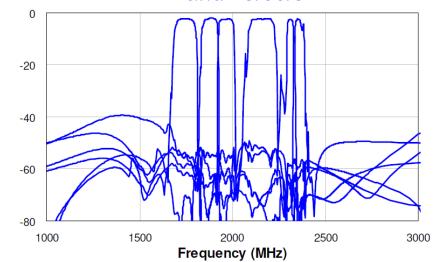
26

Multiplexer Functional Increase for 5G

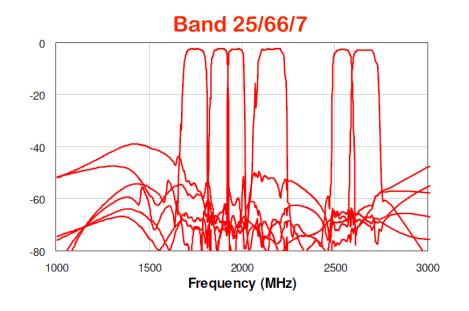
Multiple filters combined to simultaneously send/receive signals:

- 2019 LTE: Switchable "9-plexer" with 3 modes:
 - Hexaplexer/MB mode
 - B7 mode: Hexaplexer+B7 (Octaplexer)
 - B38TRx/B41N mode: Hexaplexer+B38TRx/B41N (Septaplexer)
- 2020 5G: Switchable "Mux14" with 10 modes:
 - Pentaplexer Standalone: B1RX/TX + B3RX/TX + B40TRX
 - Pentaplexer + B7 Duplexer or B41 TRx
 - Quadplexer Standalone: B25RX/TX + B66RX/TX
 - Quadplexer + B7 Duplexer or B41TRx or B30
 - Standalone: B7 or B30 or B41TRx

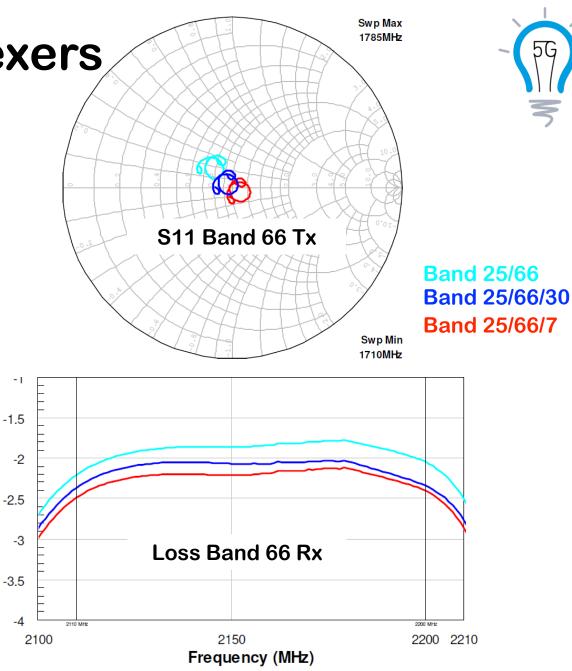




Impact of Switched Multiplexers

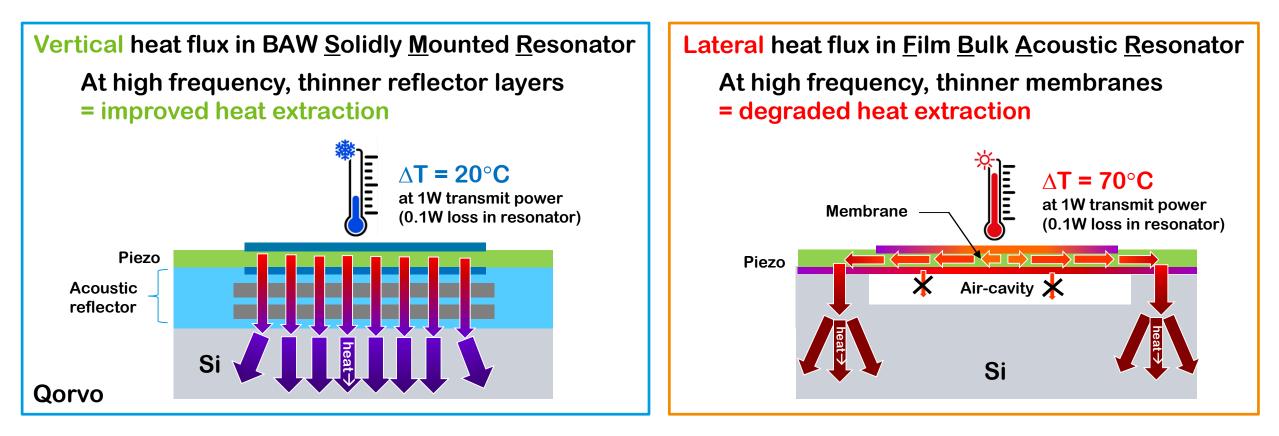

Example: North America CA

- Switched Multiplexing
 - Enables large number of CA combinations
 - Optimizes performance for each combination at the expense of increased complexity



Band 25/66/30

Impact of Switched Multiplexers


Impact of switched loading

- Switched combinations increase matching complexity:
- Optimized loading reduces losses, thereby improving battery life and sensitivity (Rx Data rate)
- Impedance variation affects transmit performance
- Negative impact on resistive losses
 and mismatch losses

5G Filter Power-Handling

BAW-SMR and **FBAR** challenges, especially for higher frequencies

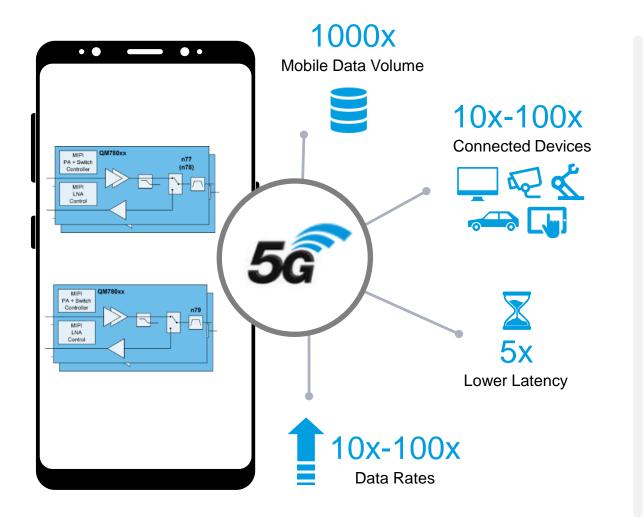
Result: Thermal management at high transmit power is critical to prevent resonators from overheating; alternative is bigger resonators \rightarrow increased IL & size

5G RF will be Challenging

Choices in RF suppliers is critical to a successful deployment

- PA: Fighting against decreased Efficiency → Less Battery Life
 - Consider 2 Waveforms & Modulations
 - Design for both EVM and ACLR
 - At many different Tx power levels
 - In both APT and ET to satisfy varying, complex EN-DC combinations
- Filter: Fighting against further decreased Battery Life and Rx coverage & data rates
 - Satisfy complex CA cases by utilizing advanced multiplexers
 - Balancing both Tx IL (Battery life) and Rx IL (data rate, Rx coverage)
 - Survive high Tx power with robust filter designs
- Overall: Fighting Time to Market, Cost and Implementation Risk

Look for 5G RF Suppliers who:


- Have a strong history of success in LTE, the backbone of 5G
- Have deep system level knowledge
- Are focused on building a solution, not just selling a product
- Can deliver a portfolio, not just a few components component

Simplifying the Complex 5G NSA CA/UL Case Qorvo Mobile 5G portfolio

Qorvo's 5G NR FR1 portfolio addresses 4G and 5G eMBB handset challenges of ever-increasing CA modes, complex 4x4 MIMO antenna architectures, difficult coexistence requirements and space constraints by innovative integration of best-in-class filters, power amplifiers, high performance switches and LNAs, antenna tuners, and antenna-plexers.

(((C_A)))

Ħ

- Providing a complete, global CA Platform
- Enabling challenging UL/DL MIMO
- Integration for smallest RF solution size
- Optimized for flexibility and scalability

Speeding an OEM's time-to-market (TTM)

© Qorvo, Inc.

Upcoming IEEE Future Networks Webinar

IEEE FUTURE NETWORKS WEBINAR: Silicon Technologies for mmWave 5G Enhanced Mobile Broadband Radio Interface Tuesday May 14, 2019 11:00am EDT with moderation by Brian Zahnstecher, Principal, PowerRox

Dr. Anirban Bandyopadhyay Director, RF Strategic Applications & Business Development GLOBALFOUNDRIES, Inc.

Register at bit.ly/FNWebinar2

- <u>Register</u> for the 14 May IEEE Future Networks webinar
- <u>View</u> past IEEE Future Networks webinars

