mmWaves in 5G NR cellular networks: a system level perspective

Michele Polese

Department of Information Engineering
University of Padova, Italy
polesemi@dei.unipd.it

mmWaves in 5G NR cellular networks:

 a system level perspective
Joint work with

- mmWave group at UNIPD - Prof. Michele Zorzi, Marco Giordani, Mattia Rebato, Tommaso Zugno
- NYU Wireless - Prof. Sundeep Rangan, Marco Mezzavilla, Menglei Zhang
- Industrial collaborations: InterDigital, AT\&T, Intel
- Acknowledgement to NIST Award 70NANB17H166

interDigital. At\&T

Outline

- Introduction
- Mobility at mmWaves
- Multi connectivity solutions
-3GPP NR beam management
- Deployment of mmWave networks
- Integrated Access and Backhaul
- End-to-end performance and cross-layer interactions
-TCP and the mmWave RAN
- Conclusions and research directions

3GPP NR: novelties

- New Radio Access Network (RAN)
- Physical layer with Orthogonal Frequency Division Multiplexing (OFDM)
- Support for
- Higher frequencies (mmWaves)
- Ultra-low latency
- Stand-alone (SA) or Non Stand-alone (NSA) operations
- New Core Network
- Network Function Virtualization (NFV)
- Network slicing

3GPP NR: novelties

5G Core Network options

mmWave directional! communications

Goal: deployment by 2019

3GPP NR: mmWaves in cellular networks

3GPP NR Release 15 will support frequencies up to 52.6 GHz
-Potentials

- Bandwidth
- Large arrays in small space

Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," in IEEE Communications Magazine, vol. 49, no. 6, pp. 101-107, June 2011.
-Challenges
- High propagation loss
- Directionality
- Blockage

mmWave research in Padova

MAC layer and network level perspectives

ADC

Interference

Spectrum Sharing

Antenna Modeling

Mobility

Transport Protocols

Initial Access

Public Safety
Communications

Tracking

Integrated Access and Backhaul

Simulation

Vehicular Communication

ns-3 mmWave module

- Built on top of ns-3 - popular open source network simulator - and the LTE LENA module
- Used in several performance evaluations presented in this talk
- End-to-end performance analysis
- Multiple scenarios (cellular, public safety, vehicular)
- Realistic channel model implementation (3GPP)
- Custom PHY/MAC
- Mobility with dual connectivity
- Full TCP/IP stack
- Application layer

Mobility at mmWaves

Multi connectivity and beam management

The mobility challenge at mmWaves

Issues: high propagation loss and blockage

Ultra-dense deployments

High number of handovers

Large antenna arrays increase the link budget, but the power is
focused on narrow beams

Need to track the narrow beams when moving

Multi connectivity for mmWaves

- Goal: design a system resilient to fluctuations and outages

Multi-connectivity combines sub-6 GHz and mmWave benefits
M. Polese, M. Giordani, M. Mezzavilla, S. Rangan and M. Zorzi, "Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks," in IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 2069-2084, Sept. 2017.

Results: throughput variance with UDP traffic

(a) Variance/Mean ratio, for $T_{\mathrm{UDP}}=20 \mu s$.

(b) Variance/Mean ratio, for $T_{\mathrm{UDP}}=80 \mu s$.

Variance is lower when multi connectivity is implemented (good for real-time applications - prevents buffer overlows)

- UDP traffic (constant bitrate, $400 \mathrm{Mbit} / \mathrm{s}$ at application layer)
- Throughput measured in the RAN

Results: latency with TCP traffic

No Handover Single Connectivity (HH) Dual Connectivity
High blockage density

- No handover -> bufferbloat with TCP (more on this later)
- Multi connectivity (fast handovers - no service interruption) -> lowest RAN latency

Takeaways on multi-connectivity

- Generally improved network performance
- Lower latency
- More stable throughput
- Lower signaling traffic
- Flexible solutions for control and user plane coordination
- Cost
- RAT integration
- Backhaul traffic

Beam management in 3GPP NR - motivation

INITIAL ACCESS

- Challenge: at mmWaves antenna gains are needed already during the IA phase

Directional initial access schemes

Beam management in 3GPP NR - motivation

INITIAL ACCESS

- During Initial Access (IA) a UE establishes a physical link connection with a gNB Directional initial access schemes

BEAM TRACKING

- UE and gNB keep tracking which is the best beam for communication throughout the whole session
- Possibly trigger mobility procedures such as beam switch, handover or radio link failure

Beam management in 3GPP NR

3GPP NR integrates beam management procedures at the PHY and MAC layers

- Novel design of synchronization and reference signals
- Novel procedures for initial access and beam tracking

[^0]Frequencies", IEEE Communications Surveys and Tutorials, 2018.
M. Giordani, M. Polese, A. Roy, D. Castor, M. Zorzi, "Standalone and Non-Standalone Beam Management for 3GPP NR at mmWaves", submitted to IEEE Comm Mag, 2018.

3GPP NR Measurement Signals: SS block

SYNCHRONIZATION SIGNAL (SS): the fundamental DL measurement signal for users in idle mode*

- Each gNB transmits directionally the SS blocks, by sequentially sweeping different angular directions to cover a whole cell sector.

SS block and burst

- Each SS burst is composed of (max) 64 SS blocks
- Each slot (14 OFDM symbols) contains 2 SS blocks (i.e., of 4 OFDM symbols each)
- SS bursts are sent every Tss (overhead)
- Each SS block is mapped to a certain angular direction \rightarrow measurements are made
- Based on the SS measurements, the optimal TX/RX beam pair is selected

3GPP NR Measurement Signals

SOUNDING REFERENCE SIGNAL (SRS): the fundamental UL measurement

 signal for users in connected mode

CHANNEL STATE INFORMATION REFERENCE SIGNAL (CSI-RS): the DL measurement signal for users in connected mode

Beam Management in NR

The 3GPP has specified a set of procedures for the control of multiple beams at mmWave frequencies which are categorized under the term BEAM MANAGEMENT

1. Beam sweeping
2. Beam measurement
3. Beam determination
4. Beam reporting

Initial Access in a standalone deployment

Results: detection accuracy

What is the probability of receiving an SS block?

- Better accuracy with narrow beams
(the more antenna elements in the system, the narrower the beams, the more directional the transmission, and the higher the beamforming gain)
- Better accuracy for dense networks

Results: IA reactiveness

How much time does it take to perform IA (or react to a channel update)?

$$
\left\lvert\, \begin{aligned}
& \text { - } M_{\mathrm{gNB}}=4, M_{\mathrm{UE}}=4 \quad-\cdots * M_{\mathrm{gNB}}=16, M_{\mathrm{UE}}=4 \\
& =-M_{\mathrm{gNB}}=64, M_{\mathrm{UE}}=4 \quad \cdots * M_{\mathrm{gNB}}=16, M_{\mathrm{UE}}=16 \\
& -\mathrm{C}=M_{\mathrm{gNB}}=64, M_{\mathrm{UE}}=16=--M_{\mathrm{gNB}}=64, M_{\mathrm{UE}}=1(\mathrm{omni})
\end{aligned}\right.
$$

(b) gNB Analog, UE Digital (DL-based configuration)

Number of SS blocks per burst

Main takeaways on beam management for NR

- Complete the beam sweep in a single SS burst
(this depends on the number of blocks per burst, the beamforming and the antenna array architectures)
- With low network density, larger antenna arrays enable the communication with farther users, and provide a wider coverage. However, as the gNB density $\left(\boldsymbol{\lambda}_{\boldsymbol{b}}\right)$ increases, it is possible to use a configuration with wide beams for SS bursts
- Multi-connectivity frameworks can help for beam reporting during beam tracking

Deployments at mmWaves

Integrated Access and Backhaul

Backhaul for mmWave Deployments

High propagation loss + blockage

High deployment density

? How is it possible to provide high-capacity backhaul in such a dense scenario?

Integrated Access and Backhaul

3GPP Work Item for Release 16

- Goals:
- Provide backhaul in dense deployments without densifying the transport network
- Support in-band and out-of-band backhauling
- IAB nodes should be transparent to UEs (no difference for the handset)
- Support multiple hops
- Perform self-adaptation of topology
- Reuse Rel. 15 NR specifications

3GPP, "Study on Integrated Access and Backhaul", TR 38.874 - V1.0 Rel. 15

Integrated Access and Backhaul

- Opportunities

- mmWave: high bandwidth for backhaul + spatial reuse
- In-band backhaul -> no need for multiple frequency licenses
- Plug-and-play design - self-configuration of IAB nodes
- Challenges
- Scalability
- Efficient scheduling
- Analyze cross-layer interactions

How will IAB perform?

- End-to-end performance in a grid scenario

IAB Performance in grid scenario

- Preliminary evaluation: simple outdoor scenario

Parameter	Value
mmWave carrier frequency	28 GHz
mmWave bandwidth	1 GHz
3GPP Channel Scenario	Urban Micro
mmWave max PHY rate	$3.2 \mathrm{Gbit} / \mathrm{s}$
MAC scheduler	Round Robin
Subframe duration	1 ms
Donor gNB to remote server latency	11 ms
RLC buffer size $B_{R L C}$ for UEs	10 MB
RLC buffer size $B_{R L C}$ for IAB nodes	40 MB
RLC AM reordering timer	2 ms
UDP rate R	$\{28,224\}$ Mbit/s
UDP packet size	1400 byte
Number of independent simulation runs	50

TABLE I: Simulation parameters

- From 0 to 4 IAB nodes
- 40 users randomly placed outdoor
-3GPP channel model
- UDP traffic at rate $R \in\{28,224\}$ Mbit/s per UE

End-to-end Performance for IAB

-- Donor gNB UEs, $R=224 \mathrm{Mbit} / \mathrm{s}-*$ Donor gNB UEs, $R=28 \mathrm{Mbit} / \mathrm{s}$	
-+- IAB nodes UEs, $R=224 \mathrm{Mbit} / \mathrm{s}$	$-*-$ IAB nodes UEs, $R=28 \mathrm{Mbit} / \mathrm{s}$
-+- All UEs, $R=224 \mathrm{Mbit} / \mathrm{s}$	$-\infty-$ All UEs, $R=28 \mathrm{Mbit} / \mathrm{s}$

-— Donor gNB UEs, $R=224 \mathrm{Mbit} / \mathrm{s}-$ - Donor gNB UEs, $R=28 \mathrm{Mbit} / \mathrm{s}$ - +- IAB nodes UEs, $R=224 \mathrm{Mbit} / \mathrm{s}-*-$ IAB nodes UEs, $R=28 \mathrm{Mbit} / \mathrm{s}$
$-++=$ All UEs, $R=224 \mathrm{Mbit} / \mathrm{s} \quad=-\infty=\mathrm{All}$ UEs, $R=28 \mathrm{Mbit} / \mathrm{s}$

Main takeaways on IAB

- IAB can provide an alternative to fiber for initial ultra-dense NR deployments
- We provide a tool for end-to-end performance evaluation
- Key design parameters for improved end-to-end performance:
- Scheduler
- Multi-hop attachment strategies
- Spatial multiplexing (to be investigated)
M. Polese, M. Giordani, A. Roy, D. Castor, M. Zorzi, "Distributed Path Selection Strategies for Integrated Access and Backhaul at mmWaves", IEEE GLOBECOM, 2018.
M. Polese, M. Giordani, A. Roy, S. Goyal, D. Castor, M. Zorzi, "End-to-End Simulation of Integrated Access and Backhaul at mmWaves", IEEE CAMAD, 2018.
https://github.com/signetlabdei/ns3-mmwave-iab

End-to-end performance at mmWaves

 TCP issues in mmWave networks
TCP issues on mmWave links

Possible solutions

To cope with wireless channel fluctuations (LOS-NLOS-LOS), we need:

1. A shorter control loop, to react faster
2. Faster window ramp-up mechanisms, to exploit the available data rate
3. Mobility management or multiple paths (avoid LOS-NLOS)
4. A cross-layer approach to better discipline the TCP sending rate
M. Zhang, M. Polese, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar, M. Zorzi, "Will TCP work in 5G mmWave Cellular Networks?", to appear on IEEE Communication Magazine, 2018
M. Polese, M. Zhang, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar, M. Zorzi, "milliProxy: a TCP Proxy Architecture for 5G
mmWave Cellular Systems", 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2017, pp. 951-
957
M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, "Mobility Management for TCP on mmWave Networks", in Proceedings of the 1st ACM Workshop on Millimeter-Wave Networks and Sensing Systems 2017 (mmNets), pp. 11-16, Snowbird, Utah, USA, Oct.
2017
M. Polese, R. Jana and M. Zorzi, "TCP and MP-TCP in 5G mmWave Networks," in IEEE Internet Computing, vol. 21, no. 5, pp.

12-19, 2017

milliProxy - a TCP proxy for mmWaves

- Goal: reduce buffering latency + increase goodput
- Transparent to the end-to-end flow
- Installed in the gNB - or at the edge
- Cross-layer approach
- Per-UE data rate
- RLC buffer occupancy
- RTT estimation
- Modular
- Plug-in different flow control algorithms
(inspired to [1])

[1] M. Casoni et al., "Implementation and validation of TCP options and congestion control algorithms for ns- 3," in Proc. WNS3, 2015

milliProxy - flow control

- Interaction with the TCP sender
- TCP sending rate is min (CW)ARW)
- milliProxy modifies the ARW in the

Advertised window (receiver's feedback sent on ACK packets)
Congestion window (computed by the sender) ACKs, according to the flow control
policy used

- Bandwidth-Delay
_Receiver window at the TCP sender (i.e., flow window in the proxy)
_Congestion window at the TCP sender when the proxy is used Product (BDP) based $A R W=B W^{*} R T T$
- More conservative ARW = $\min \left(\left[R T T^{*}\right.\right.$ PHY $\left.\left._{\text {rate }}\right]-B, 0\right)$
$=-=$ Congestion window at the TCP sender when the proxy is not used

Results: scenario with many LOS/NLOS transitions

Throughput

(a) TCP goodput

$D_{S 1}+D_{R S}[\mathrm{~ms}]$	2	6	11	21
$B_{\text {RLC }}=10 \mathrm{MB}$	1.1941	1.6875	1.7202	2.2430
$B_{\text {RLC }}=20 \mathrm{MB}$	1.0135	1.1448	1.0765	1.9901

(b) Latency in the RAN (from the PDCP at the eNB that at the UE)

$D_{S 1}+D_{R S}[\mathrm{~ms}]$	2	6	11	21
$B_{R L C}=10 \mathrm{MB}$	11.8008	4.7547	2.5574	1.9888
$B_{\mathrm{RLC}}=20 \mathrm{MB}$	43.3299	11.5578	5.8104	3.6988

Latency reduction w milliProxy

Main takeaways end-to-end TCP

- Performance issues with intermittent mmWave links
- Solutions have been proposed and should be integrated in new NR mmWave deployments
M. Zhang, M. Polese, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar, M. Zorzi, "Will TCP work in 5G mmWave Cellular Networks?", to appear on IEEE Communication Magazine, 2018
M. Polese, M. Zhang, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar, M. Zorzi, "milliProxy: a TCP Proxy Architecture for 5G mmWave Cellular Systems", 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2017, pp. 951957
M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, "Mobility Management for TCP on mmWave Networks", in Proceedings of the 1st ACM Workshop on Millimeter-Wave Networks and Sensing Systems 2017 (mmNets), pp. 11-16, Snowbird, Utah, USA, Oct.
2017
M. Polese, R. Jana and M. Zorzi, "TCP and MP-TCP in 5G mmWave Networks," in IEEE Internet Computing, vol. 21, no. 5, pp.

12-19, 2017

Conclusions

- mmWave is the new frontier of wireless
- Research and standardization groups are addressing the main issues
- But the research is still active:
- New applications of mmWave (vehicular)
- End-to-end performance
- Circuit design
- Testbeds and deployments
- Fundamental trade-offs

Resources

- ns-3 mmWave module can be downloaded from Github
- www.github.com/nyuwireless-unipd/ns3mmwave
- IAB extension https://github.com/signetlabdei/ns3-mmwaveiab
- Tutorial paper on the module https://ieeexplore.ieee.org/document/8344116/
- UNIPD mmWave website
- http://mmwave.dei.unipd.it
- All the relevant publications with links to arXiv/IEEExplore/ACM DL

References

- Marco Mezzavilla, Menglei Zhang, Michele Polese, Russell Ford, Sourjya Dutta, Sundeep Rangan, Michele Zorzi, End-to-End Simulation of 5G mmWave Networks, IEEE Communications Surveys and Tutorials 2018
- M. Zhang, M. Mezzavilla, R. Ford, S. Rangan, S. Panwar, E. Mellios, D. Kong, A. Nix, M. Zorzi, Transport Layer Performance in 5 G mmWave Cellular, IEEE INFOCOM mmWave Networking Workshop, April 2016, San Francisco
- M. Polese, M. Mezzavilla, M. Zorzi, Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration, ACM SIMUtools 2016 conference, August 22 - 23, 2016, Prague, Czech Republic
- M. Polese, R. Jana, M. Zorzi, TCP in 5G mmWave Networks: Link Level Retransmissions and MP-TCP, IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) 2017
- M. Polese, M. Zhang, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar, M. Zorzi, "milliProxy: a TCP Proxy Architecture for 5G mmWave Cellular Systems", Asilomar 2017.
- M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, "Mobility Management for TCP on mmWave Networks", mmNets 2017.
- M. Polese, R. Jana, M. Zorzi, TCP and MP-TCP in mmWave Mobile Networks, IEEE Internet Computing magazine, special issue on 5G 2017
- M. Polese, M. Giordani, M. Mezzavilla, S. Rangan, M. Zorzi, Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks, JSAC Special Issue on Millimeter Wave Communications for Future Mobile Networks 2017
- M. Mezzavilla, M. Polese, A. Zanella, A. Dhananjay, S. Rangan, C. Kessler, T. Rappaport, M. Zorzi, Public Safety Communications above 6 GHz : Challenges and Opportunities, IEEE ACCESS on Mission Critical Public-Safety Communications: Architectures, Enabling Technologies, and Future Applications 2017
- T. Zugno, M. Polese, M. Zorzi, "Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module", WNS3 2018
- M. Polese, M. Mezzavilla, S. Rangan, C. Kessler, M. Zorzi, "mmWave for future public safety communications", i-TENDER 2017

References

- M. Polese, M. Zorzi, "Impact of Channel Models on the End-to-End Performance of mmWave Cellular Networks", SPAWC 2018
- M. Drago, T. Azzino, M. Polese, C. Stefanovic, M. Zorzi, "Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding", ICNC 2018
- T. Azzino, M. Drago, M. Polese, A. Zanella, M. Zorzi, "X-TCP: a cross layer approach for TCP uplink flows in mmwave networks", MedHocNet 2017
- M. Zhang, M. Polese, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar, M. Zorzi, "Will TCP work in 5 G mmWave Cellular Networks?", IEEE Communication Magazine, 2019
- M. Rebato, M. Polese, M. Zorzi, "Multi-Sector and Multi-Panel Performance in 5 G mmWave Cellular Networks",IEEE Globecom 2018
- M. Polese, M. Giordani, A. Roy, S. Goyal, D. Castor, and M. Zorzi, "End- to-End Simulation of Integrated Access and Backhaul at mmWaves," IEEE CAMAD, 2018.
- M. Giordani, M. Polese, A. Roy, D. Castor, M. Zorzi, "Initial Access Frameworks for 3GPP New Radio at mmWave Frequencies", IEEE 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), 2018.
- M. Giordani, M. Polese, A. Roy, D. Castor, M. Zorzi, "A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies", IEEE Communications Surveys and Tutorials, 2018.
- M. Giordani, M. Polese, A. Roy, D. Castor, M. Zorzi, "Standalone and Non-Standalone Beam Management for 3GPP NR at mmWaves", submitted to IEEE Comm Mag, 2018.
- M. Polese, M. Giordani, A. Roy, D. Castor, M. Zorzi, "Distributed Path Selection Strategies for Integrated Access and Backhaul at mmWaves", IEEE GLOBECOM, 2018.

mmwave.dei.unipd.it

mmWaves in 5G NR cellular networks: a system level perspective

Michele Polese

Department of Information Engineering
University of Padova, Italy
polesemi@dei.unipd.it

[^0]: M. Giordani, M. Polese, A. Roy, D. Castor, M. Zorzi, "A Tutorial on Beam Management for 3GPP NR at mmWave

