

((🕻 🖫

IEEE Future Networks Webinar 5G Networks for Rural and Remote Areas Applications

((0))

Prof. Luciano Mendes luciano@Inatel.br

Outline

Brief History

5G Scenarios

What is missing for a universal Internet access?

5G-RANGE: Enabler technologies for remote area operation

5G and satellite networks

Brief History

Inatel

• 4G – High data rates, music and video streaming, social media.

Brief History

5G Scenarios

Main requirements

Scenario	Requirement	Value
eMBB	Peak data rate	UL:10 Gbps DL: 20 Gbps
URLLC	User plane latency	1ms
mMTC	# of connections	10 ⁶ devices/km ²

5G Scenarios

Inatel

Technologies for 5G PHY

- Massive MIMO
- Millimeter wave
- Small Cells
- CoMP
- Channel Codes

• NOMA

What is missing in 5G?

Motivations for a remote area network

Inatel

- Connectivity gap in rural areas

- New markets for operators

- Smart farms

- Road coverage

- Disaster/environment alarms

Motivations for a remote area network

Inatel

- Last frontier for universal access.

- 3.9 billion people unconnected.

- High social impact

- Education.

- Entertainment.

- Communication.

- Digital integration.

- Entertainment

- V2X connectivity

- Safety

- Specialized treatment

- Monitoring on-the-go

- Home consults

Motivations for a remote area network

- Smart farms: innovation in agrobusiness

- New market for operators.

- Several new services:

Field automation

Machinery platooning

Cattle monitoring

Drones for images and fertilization

Network slicing

Seamless integration with other 5G scenarios.

http://5g-range.eu/

5G-RANGE: Remote Area Access Network for the 5th Generation Enabler Technologies for Remote Areas Networks

5G-RANGE Goals

Provide mobile broadband in remote areas.

Overcome the current range limitations in 4G and 5G standards.

Reduce the operational cost by exploiting TVWS in remote areas.

Increase the data rate at the cell edge.

Bring 5G services to rural and remote areas.

Inatel

Cell radius: 50 km Data rate: 100 Mbps Mobility: 120 km/h 5G services: MBB & IoT

Energy and spectrum efficiency

CP wastes energy and throughput!

CP waste of energy and bandwidth can be significantly reduced.

The ability to **control the pulse-shape** allows the co-existence with other technologies.

Flex-NOW: Waveform for remote areas

Key aspects: OOB emissions and spectral efficiency.

- Candidates: OFDM, GFDM, B-OFDM and F-OFDM
- Out-of-band emissions
 - F-OFDM and GFDM have the best OOBE
 - Windowing improves OOBE
 - B-OFDM is not able to fulfil OOBE requirements
- Spectral efficiency
 - GFDM and B-OFDM have higher efficiency due better usage of the cyclic extensions (92.75%)
- SER in AWGN and 5G-RANGE channel model
 - GFDM presents best performance
 - OFDM and F-OFDM performance is very similar

Inatel

Flex-NOW: frame design

- Different numerology addresses conflicting requirements.
- Incumbent protection based on blank resources on the grid.
- Silence period for in-band spectrum sensing.
- Resource grid allows multiple numerologies.
- Dynamic selection of the numerology, on a subframe basis.

Inatel

Flex-NOW: frame design

- Trade-off: Doppler vs delay spread:
 - Multipath \rightarrow long symbols.
 - High mobility \rightarrow short symbols.
- Scalable numerology: long range with low mobility and high mobility at short distances.
- High-speed and High mobility can be handled, but in a not bandwidth efficient way.

Inatel

Flex-NOW: specifications

- Waveforms: GFDM and OFDM
- Scalable numerology
 - Number of numerologies: 6
 - 1.875 to 30 kHz subcarrier spacing
 - CP duration from 4.4 to 141.7 us
 - Mobile speed up to 240 km/h
- Modulation: QPSK to 256 QAM
- Bandwidth: Up to 23.76 MHz (132 RB's)

Num. ID	SCS [kHz]	CP [µs]	Symbol [µs]	Target Range (*) [km]	Target Speed [km/h]
0	1.875	141.7	2133.3	236,11	7
1	3.75	70.8	1066.7	118,06	15
2	7.5	35.4	533.3	59,03	30
3	15	17.7	266.7	29,51	60
4	30	8.9	133.7	14,76	120
5	30	4.4	66.7	7,38	240

• MIMORA: MIMO for Remote Areas

- Space time coding (STC)
 - 2 Transmitter antennas Alamouti scheme

- Increases robustness over fading channels
- Users distant from the BS
- Spatial multiplexing
 - Multiple data streams between BS and UE
 - Users close to the BS
- Dual polarization
 - Necessary because of channel correlation in UHF/VHF bands (large wavelength)

- Add the cognitive cycle for TVWS exploitation.
- Combine spectrum sensing with geolocation database
- Protection of the incumbent
- Detection of unauthorized transmission (pirate TV studies)

[1] J. Vartiainen, H. Karvonen, M. Matinmikko-Blue, L. Mendes, "Performance Evaluation of Windowing Based Energy Detector in Multipath and Multi-Signal Scenarios," 14th EAI International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM), June 2019.

- Performance of Spectrum Sensing depends on algorithms.
- Can it be vendor-defined or should it be standardized?
- Fusion will improve the overall performance.

Proof-of-Concept

System parameters:

- MIMO: 2+2
- TX1 power (EIRP): 50,5 dBm
- TX2 power (EIRP): 48,5 dBm
- Transmit antenna gain: 9 dBi
- Receive antenna gain: 9 dBi
- BW: 6 MHz or 12 MHz
- Frequency: 700 MHz band

BW (MHz)	Modulation	Code rate	Bit Rate (Mbps)	BER $< 10^{-6}$	SNR (dB)
6	64-QAM	3/4	22	yes	28.51
6	64-QAM	5/6	24	yes	29.98
6	256-QAM	5/6	32	yes	26.31
6	256-QAM	3/4	29	yes	29.18
12	64-QAM	5/6	48	yes	29.35
12	256-QAM	5/6	64	no	29.15
12	256-QAM	3/4	57	yes	27.33

5G and satellite networks integration

- Solution for backhaul in remote area

- Capacity in bottleneck situation

- Seamless integration with terrestrial network

5G and satellite networks integration

Satellites as gNB for the final users

Satellites as gNB for the final users

Inatel

What about the latency?

Can we have low latency applications on remote areas using satellites?

Inatel

Connection	UDP Throughput	TCP Throughput	Jitter
B-C with WEB accelerator	90/34 Mbps	88/30 Mbps	0.260ms
B-C no WEB accelerator	90/34 Mbps	4.15/3.9 Mbps	0.260ms
C-D	30/30 Mbps	30/30 Mbps	0.465ms
B-D	30/28 Mbps	29/29 Mbps	0.451ms

WEB accelerator is mandatory for a good user experience.

Satellite Backhaul	A-B	B-C	C-D	Total
	68.15	505.525	7.07866	580.72
Terrestrial Backhaul	A-C		C-D	Total
	66.13		7.07866	73.184

Latency is a key issue for 5G services when satellite backhaul is used

Conclusions

5G networks has the potential to close the connectivity gap.

- Technologies develop for 5G can be tailored for remote areas.

 nate
- Network CAPEX can be reduced by TVWS exploitation and large cells.

• Small ISP can be the bridge in a new business model.

• Satellite and 5G integration will benefit the remote area scenario.

Acknowledge and contacts

