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The Buzz on Edge Computing

Edge Computing

Edge Computing | News, how-tos, features, reviews, and videos

DATA CENTER EXPLORER
Intel details FPGA roadmap

IBM, Bharti Airtel partner on
edge cloud offerings in India

McLaren Racing relies on edge computing at
Formula 1 tracks
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DATA CENTER EXPLORER
HPE to ship a dedicated inference server for the
edge

Akamai Products & Solutions ~ Why Akamai  Resources

Solutions > Edge Compute

Edge Compute Solutions

Innovate in real time. With the world’s largest serverless compute platform, Akamai puts
your code closer to your users.

Edge Computing

Edge Computing | News, how-tos, features, reviews, and videos
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CLOUD COMPUTING By Dawvid Linthicum A

CLOUD COMPUTING By Dawvid Linthicum
The dirty little secret about
edge computing

Cloud computing is
reinventing cars and trucks

NEW TECH FORUM

Why edge computing matters for modern software
development

The next stage of cloud computing brings computing power

closer to users, paving the way to better user experiences and

more intelligent applications.



The 5G Vision: Three Broad Use Cases

The three broad use cases include enhanced mobile broadband,
mission-critical services and massive loT

Enhanced Mission-critical Massive Internet
mobile broadband services of Things
= Multi-Gbps data rates  + Uniformity = Ultra-low latency - High availability = Low cost = Deep coverage
« Extreme capacity = Deep awareness = High reliability = Strong security « Ultra-low energy = High density
R 2 .
® s % &% o) ﬂ!l
Mobilcdenies Networking Robotics Health Wearables Smart citie

Ref. Leading the World to 5G, Qualcomm Technologies, Inc, 2016
The three broad use cases are characterized by different
metrics and parameters



The 5G Architecture

5G ARCHITECTURE
DISTRIBUTED CORE, MESH CONNECTIVITY
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The Edge Nodes Play a Key Role in Enabling 5G

Core cloud Edge server Users
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Edge Computing: Key Advantages

Low Latency

S

Cloud Cost Backepd
Reduction Traffic
Reduction
Network Load Efficient Data
Reduction Management
\ Rapid Access /

to Data
Analytics




Al / ML / Deep Learning
at the Edge Nodes



Learning at the Resource Constrained Edge Nodes
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Critical to understand the performance of the DL / FL / RL at the Edge Nodes



Design Space for Edge Intelligent Systems

Accuracy

Security Energy

Memory Latency



FEDERATED LEARNING:

A PRIVACY PRESERVING PARADIGM



The Buzz on Federated Learning

JReportLinker

The Global Federated Learning Market size is expected to
reach $198.7 Million by 2028, rising at a market growth of
11.1% CAGR during the forecast period

MIT News

ON CAMPUS AND AROUND THE WORLD =<

Collaborative machine learning that preserves
privacy

Researchers increase the accuracy and efficiency of a machine-learning
method that safeguards user data.

Adam Zewe | MIT News Office
September 7, 2022



Applications of Federated Learning

Application in the Healthcare Industry
Applications for FinTech

Applications in Insurance Sector
Applications in loT

Application in other Industries and Technologies



CLASSICAL MACHINE LEARNING VERSUS
FEDERATED LEARNING

» Central machine learning

« move the data to the computation

* Federated (machine) learning

* move the computation to the data

Central Server
£ Model Training

Centralized Machine Learning

Client 1 Cllent 2

; Data Uploadlng E

Client N

Federated Learning

Model Global Model

Ave Aggregation
ﬁ Central Server
<)

Client 1 Client 2 Client N




FEDERATED LEARNING IN A
FAULTY EDGE ECOSYSTEM:
ANALYSIS, MITIGATION AND APPLICATIONS

Work in Progress



Federated Learning
Distributed System with ML Model Exchange

Central Server

Qi Aggregation Algorithm

Model
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FL Key Objective: Privacy Preserving Paradigm !



Federated Learning & Network Parameters

Central Server

Qi Aggregation Algorithm

Network
Bandwidth “and_e'
®
Nod y ke, %
ode
Computation ® e m—
POIE]S ? - O D Volume
o & o ¥ o Y O\ g
training o O training @
Local Data Trainied g Trained @ Local Data
model

model Data Skewness

FL Performance is also a function of the System Parameters



WHAT IS THE PERFORMACE OF
FEDERATED LEARNING?



ASSUMPTIONS

m “Synchronous” Federated Learning
m The FL system is “Secure”
m The architecture is “Static”



Metrics, Models and Data Sets

m Metrics
- Accuracy
- Convergence Time

m Diverse Data Sets
- MNIST

m Database of handwritten digits and contains 60,000 training images
and 10,000 testing images

- CIFAR-10

m Consists of 60000 32x32 colour images in 10 classes, with 6000
images per class

- loT Security Dataset
m From Kaggle
m Diverse Models
- AlexNet, ResNet, LeNet, ...



Simulation & Prototype Setup

m Simulation Setup

Pysyft
Simulations are run on an Ubuntu 20.04 system
12 GB RAM, Octa-core

1.5 GHz processor 16 GB Nvidia T4 GPU

m Prototype Setup

8 Raspberry Pi4 devices having 4 GB RAM quad-core 1.5 GHz
processor

2 RPis have a storage of 8 GB
2 RPis have a storage of 4 GB
4 RPis have a storage of 2 GB

The aggregator is run on a Ubuntu 20.04 system with an 8 GB
RAM and Octa-core 1.5 GHz processor

4 RPis (8 GB, 4 GB and two 2 GB) are connected to the aggregator
over a WiFi network having a bandwidth of 10 Mbps

Other four are connected through an Ethernet line of 100 Mbps



Flower: Federated Learning Framework

?Flower Documen tation Bloeg  Events 0&A [-.'. Join Slack ] [ ¥ Star 2.9k ] [ y] [ ) ]

A Friendly
Federated
Learning
Framework Summer Of

A unified approach to federated learning, ReprOdUCibility

analytics, and evaluation. Federate any workload,

any ML framework, and any programming language. Contribute and get rewarded!



Convergence Time (in minutes)

Impact of Worker Count on the Convergence Time for
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Left Y-axis: MNIST, Right Y-axis: CIFAR-10
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Model Accuracy and Convergence Time with

% worker nodes selected

(a) Model Accuracy

Model Accuracy
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Key Takeaways

« At around 60% of worker nodes, A is almost similar to what it is at 100%
« On the contrary, the same 60% of nodes require C almost 25% less than what it

takes when using all worker nodes

Hereafter, for all experiments we use 60% of the total worker nodes to contribute

to the training process



WHAT HAPPENS WHEN WE HAVE
HETEROGENEITY?



Variation of Convergence Time with
% Worker Nodes Selected for Different
Level of Heterogeneity
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Heterogeneous Data Distribution:
Varying the Volume of Data at each Worker Node

Key Takeaways

The minimal convergence time shifts towards a higher % Worker Nodes as the
heterogeneity increases

The degree of heterogeneity impacts the optimal number of worker nodes



WHAT ARE THE RIGHT
EDGE NODE SELECTION STRATEGIES?



Convergence Time of the FL Model when the Top
60% Nodes are Selected for
Five Selection Strategies

(a) MNIST Dataset (b) loT Security Dataset
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Key Takeaway
S - based selection strategy converges faster than the other naive strategies



Model Accuracy and Convergence Time for the
FL Model when a % of Worker Nodes in set Fail

E (a) Convergence Time (b) Model Accuracy
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Worker Failure Analysis

Key Takeaways:

» C decreases with increasing W nodes that fail, however, A decreases too!

» The learning model does not converge to the state-of-the-art accuracy for the
given model



Accuracy of the FL model for the same Number of
Contributing Worker Nodes for
Failure and No-failure Cases
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Number of Contributing Workers

Key Takeaways:

» We see lower accuracy in the scenario where nodes falil
« The failed nodes might have some crucial data samples which when removed due
to worker node failure reduces A



The Federated Fault Mitigation Algorithm
(FedFM) Run on the Aggregator

Algorithm 1: Federated Fault Mitigation Algo-
rithm (FedFM) run on the Aggregator. ClientUpdate
(k,w) [12] is the same function used by FedAvg.

Result: The Global Federated Learning Model with
weight w;y
1 wp + initialized model weights
2 W« 06 // Fraction of total nodes to
be selected
F 1}

3
4 foreach round t 1.2, ... do

m +— mazr(W* K, 1);
6 N: « Select top m workers based on S.;
7 foreach client k € N; in parallel do
8 wk | + ClientUpdate (k,w,):;
9 if wF, |, = null after time T then
10 | Append k to F:
11 end
12 end
13 | if |F| >0 and m > 1 then
14 ,-'l"u'rt'f + Select top |F| workers based on S.;
15 foreach client k £ .-"\u"tf in parallel do
16 | wfy, « ClientUpdate (k. w,);
17 end
18 end
19 WA Yk %f‘i*-’f—l

20 end




Convergence Time for FedAvg and FedFM
in Different Scenarios
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Key Takeaways:
« Fault mitigation is crucial for any Federated Learning Ecosystem

« With FedFM we are able to improve the Convergence Time and Model Accuracy

for an FL technique
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Convergence Time vs Accuracy Plots
for Different Scenarios with and Without Failure

(a) No Failure (b) 20% failed worker nodes
100 0w — —
= o0 = — o 95 - - - =
[ 5] [1] L
E 80 E a0 I If"_;
g I 2 8|
o 80 2 80 |
=y 50 <L I
g ¥ 3
2 ﬁ Centralised 2 sl No Mitigation
0 FedFM - - g edFM - -
100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600 700
Convergence Time (in seconds) Convergence Time (in seconds)
(e) 40% failed worker nodes (d) 60% failed worker nodes
wmw ———— — 100 — —
F 9o -~ " - > 95 - —
& 90 i & 90 - ,—--"f
5 S 8 -7
o 85 | o 80 f—
E 80 ] |I E 75 ”
- 15 - 70 |
55} a !
T 70 o - 8] o
g g5 | /' No Mitigation g 60 No Mitigation
s0 L dFM - - = edFM - -
i 100 200 300 400 500 &0O0 700 800 0 100 200 300 400 500 &ODO TOO B0O0 900 1000
Convergence Time (in seconds) Convergence Time (in seconds)

Key Takeaways:

» The results highlight the utility of FedFM in loT security applications

« Such utility is of utmost importance when there is a possibility of failure of nodes,
which is true for any practical edge environment



OPTIMAL NODE SELECTION
FOR FEDERATED LEARNING
WITH NON-IID DATA



Defining Non-lITD

m There are different ways of defining a Non-IID data
distribution

— Attribute skew

- Label skew

- Temporal skew

- Quantity skew
m For every class, the quantity (i.e., size of data) is different
m Not all classes have the same data size

m We work with quantity skewness which means that the
training data can vary across all clients



Accuracy
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Federated Node Selection with Entropy (FEdANSE)

: H — p(xi)logy(p(z:))
) _,X . _ / A
??( } Hm ax Z Eﬂﬂbﬂ

Naive Selection Methodology

New Selection Methodology

5_( Y K )*1
e B*p—l_PﬂqV{ﬁ_lj ?_}



Variation of Accuracy of the Competing Systems with
Convergence Time for different levels of Skewness
(X% of nodes have heterogeneous data distribution)
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Key Takeaways

The number of worker nodes plays an integral part in the
efficiency of an FL technique and is dependent on the
learning model’s architecture

Not all nodes in the network are required for an efficient
FL model

- Empirically, 60% of the total nodes would perform as
well as all the available nodes in a homogeneous
setting

Having a specific number of working nodes in the network
IS not the same as having the same number of nodes post
failure as the failed nodes could have exclusive data
samples, thus hindering the model performance

FedFM improves upon the existing FL techniques by
employing fault mitigation strategies and has high utility in
real world applications such as loT security



Threats, Attacks and Defences
in Federated Learning



Attack Vectors in Federated Learning

emTEEEEET Federated Learning

Data Poisioning

Model Aggregation
AW=Agar(AW +AW +..+AW _+AW)
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.t

Data and Behavior :
Auditing Phase K

Training Phase

Global Model
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Fig. 1 The multi-phases framework of FL including data and behavior auditing, model training and mode! predicting
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Maliciousness in Worker Nodes
How do we detecting Maliciousness in Worker Nodes and incorporate the
same in selection criteria?

Malicious Nodes
- Nodes with wrongly labelled data

The extent of the malicious nodes could be varied

The number of malicious nodes and the total number of nodes could be
varied

We can also test in a dynamic setting where the nodes may be initially
benign and may start turning malicious after some internal of time

lgnoring such nodes becomes quite important for the selection algorithm
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Loss Value

Incorporating Maliciousness in Worker Nodes
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400

Local Model Loss for Malicious Node
Detection

Total Worker Nodes: 20

Malicious Nodes: 4 (Labels swapped)
Data Distribution: Homogeneous
Dataset: MNIST

Considerably higher local model loss
values for malicious nodes



Fairness in Federated Learning



Fairness in Federated Learning

ient Selection
| Model Optimization

_ Incentive Distribution



Challenges of Federated Learning

Heterogeneity

Lack of

Standardization Privacy

Server coordinating

e the training of a
@ global Al model

/TN

Devices with . .
local Al models Communication

FL at the Edge Efficiency

Security Model Selection



Scope for Further Extensions

Decentralized Federated Learning

Dynamic Network Architecture

Incorporating Fairness in Node Selection
Investigating different definitions of Skewness

Securing Federated Learning
- Additional Attack vectors



THANK YOU
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