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Agenda of the Tutorial

Introduction & Motivation
Mobile Edge Security (MEC)
MEC Architecture

Security issues in Emerging Edge Paradigms
* Federated Learning
* Reinforcement Learning

Summary and Future Directions



The Buzz on Edge Computing

Edge Computing

Edge Computing | News, how-tos, features, reviews, and videos

DATA CENTER EXPLORER
Intel details FPGA roadmap

IBM, Bharti Airtel partner on
edge cloud offerings in India

McLaren Racing relies on edge computing at
Formula 1 tracks
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rackK Crews and guesisvia v vare Workspace ONE.

DATA CENTER EXPLORER
HPE to ship a dedicated inference server for the
edge

Akamai Products & Solutions ~ Why Akamai  Resources

Solutions > Edge Compute

Edge Compute Solutions

Innovate in real time. With the world’s largest serverless compute platform, Akamai puts
your code closer to your users.

Edge Computing

Edge Computing | News, how-tos, features, reviews, and videos
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CLOUD COMPUTING By Dawvid Linthicum A

CLOUD COMPUTING By Dawvid Linthicum
The dirty little secret about
edge computing

Cloud computing is
reinventing cars and trucks

NEW TECH FORUM

Why edge computing matters for modern software
development

The next stage of cloud computing brings computing power

closer to users, paving the way to better user experiences and

more intelligent applications.



Edge Computing Spend

* Report by Market research firm IDC

- Edge computing spend is expected to surpass $300
billion by 2026, with a compound annual growth rate
of 15% during the three year period

- Edge computing spend to be $208 billion in 2023, a
13.1% increase on 2022 spend !

EDGE COMPUTING
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The 5G Vision: Three Broad Use Cases

The three broad use cases include enhanced mobile broadband,
mission-critical services and massive loT

Enhanced Mission-critical Massive Internet
mobile broadband services of Things
= Multi-Gbps data rates  + Uniformity = Ultra-low latency - High availability = Low cost = Deep coverage
« Extreme capacity = Deep awareness = High reliability = Strong security « Ultra-low energy = High density
R 2 .
® s % &% o) ﬂ!l
Mobilcdenies Networking Robotics Health Wearables Smart citie

Ref. Leading the World to 5G, Qualcomm Technologies, Inc, 2016
The three broad use cases are characterized by different
metrics and parameters



The Edge Nodes Play a Key Role in Enabling 5G

Core cloud Edge server Users
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The 5G Architecture

5G ARCHITECTURE
DISTRIBUTED CORE, MESH CONNECTIVITY
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Edge Computing: Key Advantages

Low Latency

S

Cloud Cost Backepd
Reduction Traffic
Reduction
Network Load Efficient Data
Reduction Management
\ Rapid Access /

to Data
Analytics




Al / ML / Deep Learning
at the Edge Nodes



Learning at the Resource Constrained Edge Nodes

How does it work?
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running ML / DL at the Edge



Design Space for Edge Intelligent Systems

Accuracy

Energy

Memory Latency



MEC ARCHITECTURE



Secure Three Layer MEC Architecture

Internet Core
& ﬁ oud .
data eenter 4 |
.\ Internet ) o
I = Backbpne Link Preprocessing
TN \______f,.@
Attacker ~ DoS | Mobile Edge Cloud | %«,3

attacks “‘m,h‘_ ¥
. Data Feature
Extraction Extraction

MITM, MEC Server
D Attacks, Classification

privacy TR T ﬁqw
Rogue  leakage Mobile Devices ngh speed
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Jammlng
signals Mobile

Jammer

Reference: “Security in loT-Driven Mobile Edge Computing: New Paradigms,
Challenges, and Opportunities”, S. Garg et al, IEEE Network, Sept/Oct 2021



CHALLENGES TO THE MEC PARADIGM

Access control

Heterogeneity of MEC systems

|ldentity authentication

Privacy preservation

Secure data aggregation
Mis-configurations

Diversity of communication technologies
Secure content distribution

Resilience to attacks

Lightweight protocol design

Establishing trustworthy data sharing practices



CHALLENGES TO THE MEC PARADIGM

« The lack of comprehensive security mechanisms render
the deployment of MEC a technically challenging
problem

* The security goals of MEC should be grounded on a
combined objective of securing the data and ensuring
the safety and resiliency of systems and processes

« Confidentiality
* Integrity

« Availability

« Safety

* Resiliency



Proposed SecEdge-Learn MEC Architecture

Swpd) Core Cloud

Verify ana add
10 blockchain

Cloud data center

e
of cluster-
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rediction using LSTM-based Attack detection using ) Transfer Learning
( Reinforcement Leaming
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features and attack pattems
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Reference: “Security in loT-Driven Mobile Edge Computing: New Paradigms,
Challenges, and Opportunities”, S. Garg et al, IEEE Network, Sept/Oct 2021




Sequence of Activities in SecEdge-Learn

:Smart Agent

:Attacker ‘MEC Cluster (Learn Engine)

‘Trusted Network :Blockchain

- ‘J attack detection
Attack detecterl, Block attacker

j]<---------------------5 ----------------------- Crea‘e'og.addtobbck i !
ing :‘ Verify and Approve |
' Add log to blockchain

—-

dispatch

Mk dispatch .D, Acthiate Activate TL

.............................................
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Reference: “Security in loT-Driven Mobile Edge Computing: New Paradigms,
Challenges, and Opportunities”, S. Garg et al, IEEE Network, Sept/Oct 2021



EMERGING PARADIGMS AT THE EDGE
FEDERATED LEARNING

A PRIVACY PRESERVING PARADIGM



The Buzz on Federated Learning

JReportLinker

The Global Federated Learning Market size is expected to
reach $198.7 Million by 2028, rising at a market growth of
11.1% CAGR during the forecast period

MIT News

ON CAMPUS AND AROUND THE WORLD =<

Collaborative machine learning that preserves
privacy

Researchers increase the accuracy and efficiency of a machine-learning
method that safeguards user data.

Adam Zewe | MIT News Office
September 7, 2022



Applications of Federated Learning

Application in the Healthcare Industry
Applications for FinTech

Applications in Insurance Sector
Applications in loT

Application in other Industries and Technologies



CLASSICAL MACHINE LEARNING VERSUS
FEDERATED LEARNING

» Central machine learning

« move the data to the computation

* Federated (machine) learning

* move the computation to the data

Central Server
£ Model Training

Centralized Machine Learning

Client 1 Cllent 2

; Data Uploadlng E

Client N

Federated Learning

Model Global Model

Ave Aggregation
ﬁ Central Server
<)

Client 1 Client 2 Client N




Federated Learning
Distributed System with ML Model Exchange

Central Server

Qi Aggregation Algorithm

Model

y 1 o %

®
D o ﬁ O D EDGE NODES

(P
raining r Q training
Local Data Teained J Tralned Local Data
model @ model

FL Key Objective: Privacy Preserving Paradigm !



Federated Learning & Network Parameters

Central Server

Qi Aggregation Algorithm

Network
Bandwidth “and_e'
®
Nod y ke, %
ode
Computation ® e m—
POIE]S ? - O D Volume
o & o ¥ o Y O\ g
training o O training @
Local Data Trainied g Trained @ Local Data
model

model Data Skewness

FL Performance is also a function of the System Parameters



Challenges of Federated Learning

Heterogeneity

Lack of

Standardization Privacy

Server coordinating

e the training of a
@ global Al model

/TN

Devices with . .
local Al models Communication

FL at the Edge Efficiency

FOCUS

> Security Model Selection




Threats, Attacks and Defences
in Federated Learning



Taxonomy of Attacks on Federated Learning
Systems

FL attacks J
|

v
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Attack Vectors in Federated Learning

server
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Model initialization.
Local model training and upload.

Global model aggregation and update.




Attack Vectors in Federated Learning

emTEEEEET Federated Learning

Data Poisioning

Model Aggregation
AW=Agar(AW +AW +..+AW _+AW)

- o

g Privacy Inference
AW 1 .

'Trustcd \Untrusted ''

.t

Data and Behavior :
Auditing Phase K

Training Phase

Global Model

Privacy Inference

o E:vasinn

Predicting Phase

Fig. 1 The multi-phases framework of FL including data and behavior auditing, model training and mode! predicting

e




Data Poisoning Attack in Federated Learning Systems

FL server (Ihln del
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Poisoned dataset



An Example of GANs-based Inference Attack
in FL Systems

Adversary A

FL. server

-
Copy new
~ )
parameters o Mode!
Is g an image of label a?

p——

» D O e

Discriminator  Generator

@

GAN

Copy new A downloads parameters
parameters o D i) from the FL server —
e —
[

] Vdownloads parameters from

Victim

®

the FL server

)

v

A uploads gradients to
the FL server

A performs his training
phase on Model,

Vuploads gradients to the FL server

Vperforms his training
phase on Model/,



Federated Learning Systems: Challenges

Communications bottlenecks in FL systems

FL server

FL server
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An example of free-riding attack in FL systems



An Overview of Defensive Mechanisms

in FL Systems
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Federated Learning Defensive Mechanisms

Defensive mechanisms

Kev idea

Attacks

Differential Privacy

Introduce noise to the client’s sensitive data before sharing
individual updates with the FL server

Data poisoning attacks
Backdoor attacks
Inference attacks

Secure Multi-party Computation

Encrypt clients’ uploaded parameters

Inference attacks
DITM attacks

Anomaly detection

Analyze clients’ updates to identify misbehaving clients

Free-niding attacks
Model poisoning attacks
Data poisoning attacks

Robust aggregation

Detect malicious individual updates during tramning process

Inference attacks
Model poisoning attacks
Diata poisoming attacks

Federated distillation

Transfer knowledge from afully trained model to another model

Communications bottlenecks
MITM attacks

Inference attacks
GANs-based attacks




Maliciousness in Worker Nodes
How do we detect Maliciousness in Worker Nodes and incorporate the
same in selection criteria?

Malicious Nodes Definition
- e.g8.: Nodes with wrongly labelled data

The extent of the malicious nodes could be varied

The number of malicious nodes and the total number of nodes could be
varied

We can also test in a dynamic setting where the nodes may be initially
benign and may start turning malicious after some internal of time

lgnoring such nodes becomes quite important for the selection algorithm

\ N
local . nev(\; gllobal \ v~ local
moae ; N\ ’
updates, # - "‘v \ ~ Uupdates
/ \ N
" (o — =i S

Z o™ el i .

H I | dat: s Io.cal data $ local data ﬂ
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local data

- Malicious Nodes (X) e




Loss Value

Incorporating Maliciousness in Worker Nodes:
Swap the Labels

225 1

200 A

175 -

150 -

125 A1

100

0.75 A1

Time vs Local Loss

Worker:1
Worker:2
Worker:3
Worker:4
Worker:5
Worker:6
Worker:7

100

150

200
Time

250

1

300

350

400

Local Model Loss for Malicious Node
Detection

Total Worker Nodes: 20

Malicious Nodes: 4 (Labels swapped)
Data Distribution: Homogeneous
Dataset: MNIST

Considerably higher local model loss
values for malicious nodes



Data Poisoning Attacks

Accuracy(data poison =0.2) and Accuracydata poison= 0.1}
== Accuracy(data poison=02) == Accuracy(data poison= 0.1)
1.00

—— p—
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Accuracy and Loss (Data Poison rate : 0.4)

w= Accuracy == |o0SS
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Gradient Poisoning Attacks

Accuracy at different noise rates

== Accuracy(20% and 0.3 noise)
== Accuracy(15% and 0.2 noise)

1.00
0.75
0.50

0.25

0.00

Rounds

Loss(15% manipulation) and Loss(20%

200

150

100

50

0

== |0ss(15% manipulation) == Loss(20% manipulation)
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EMERGING PARADIGMS AT THE EDGE

REINFORCEMENT LEARNING

Work in Progress



Fundamentals

m Supervised learning
— classification, regression

m Unsupervised learning
- clustering

m Reinforcement learning
— more general than supervised/unsupervised learning
- learn from interaction w/ environment to achieve a goal

environment

reward action
new state

agent




New Challenges in Reinforcement Learning;

A Survey of Security and Privacy

Yunjiao Leil. Davong Ye!. Shene Shen!. Yulei Suil. Tianqging
. ) g g (LI
* . .
Zhu!™ and Wanlei Zhou?

*School of Computer Science, University of Technology Sydney,
Broadway, Sydney, 2007, NSW, Australia.
2*School of Data Science, City University of Macau, Macau,
China.

Springer Nature 2021



An Autonomous Driving Scenario

The green car is an agent. the environment comprises the road, the
trac signs, other cars, etc.



A Simple Example of a Security Attack in
Reinforcement Learning in the Context of
Automatic Driving

Environment Attack: Changing the

road condition to mislead the
agent to take a wrong action.
=
/ @ N ( 'J;E;
x;(g‘; == :ﬁ'(@‘__,j’
S\

Action attack: Tempting the agent
to take an action of “turn right”,
rather than the optimal action of
“go straight”.

0-© 2

\ Reward attack: Giving a wrong

reward of +1, instead of -1.

\ e §




Summary of Research Addressing Security in

Reinforcement Learning

) _ Representative|
Subsection Papers Target Impact Strategies
Methods
Optimization-bas
) . . approaches
Lee et al. [58] Action Reward Perturbations
Projected gradient
Security of descent
state and . o . . X Zero-sum game
. Chen et al. [56] Action Policy Action robustne
action Nash equilibriumt
in MDP Policy . . . .
Zhao et al. [45] State Ferturbations Imitation learning
Action
. Sy=stem X
Garrett et al. [64] State Perturbations Z tables
destabilization
. X X Prediction maodel
Sun et al. [40] State Reward, Action Perturbations
Neural network
Ye et al. State Action Model learning Deep neural network
Convolutional neural
Dai et al. [65] State-action Polic Safe exploration network

Transfer learning

Security of
environment

in MDF

Rakhsha et al.

Chan et al. [59]

Wang et al. [22]

Li et al. [46]

[43]

Transition

dynamics

! rewards

Features

Environment

conditions

Non-stationary

environment

Reward

Robust policy

Robust policies

Diata poisoning

Adversarial sample

Robust adversarial

learning

Robust adversarial

learning

Optimization problems

having constraints

Sliding-window
method

Gradient function
Cross-entropy

method

Actor-critic
architecture

Minimax optimization
End-to-end

learning approach

CGradient-bazed

Lin et al. [44] Features Action Adversarial sample
methods
R U R . Two-playver _ .
Li et al. [66] Environment Policy Nazh equilibrinm
FETO-S11IN ZATNE
X . R . Two-player Nash equilibrinm
Zhai et al. [67] Environment Policy
FETO-SUIn galne Lyapunov network
. R . . R R Optimal control
Security of Zhang et al. [54] Reward Policy Poizoning attack
problems
reward
. . ) Imitation learning
function . I X Adversarial inverse
Li et al. [6E] Reward Policy Entropy

in MDP

reinforcement learning

regularization term



Key Findings of the Edge Security Report

* Edge deployments are increasing in scale across
investments, projects, use cases, endpoints and
types of endpoints

e Security is the top challenge cited by enterprises with
edge deployments

* Risks to edge systems such as cyberattacks and from
edge systems due to vulnerabilities and
misconfigurations are on the rise

Reference:


https://www.redhat.com/en/resources/state-of-edge-security-report-overview

Summary and Future Directions

m MEC Security is a critical area that needs a lot more
attention considering the huge growth of the Edge

m New paradigms at the Edge such as Federated
Learning, Reinforcement Learning, etc are likely to
spawn additional attack surfaces and attack vectors

m Need robust mitigation of the attacks since Edge
nodes will become more complex with each passing

year



THANK YOU

rajeevshorey@gmail.com
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