



International Network Generations Roadmap (INGR) Virtual Workshop Systems Optimization

> Meryem Simsek, Lyndon Ong Kaniz Mahdi, Ashutosh Dutta 16 June 2020



## **10-year Vision**

Future systems will be highly distributed fabrics of compute, intelligence and networking interconnected at multiple levels, making optimization an interesting challenge.

Key areas of need:

- Dynamic fabric allocation with (near) real time discovery and peering of heterogenous resources contributed by disparate providers
- Dynamic semantics discovery and negotiation at points of attachment between peer entities
- Distribution and federation of intelligence across disparate contributing entities
- Self-optimizing techniques for autonomic system behaviors





### Scope

The Systems Optimization working group within the IEEE Future Networks Initiative will address:

- modeling of control of complex networks of self-organizing systems
- identification of the key problems for control of such networks development of new solutions to achieve network self-organization, applying intelligence science concepts such as emergence
- demonstration of these features within the scientific community.
  - collaboration with industry and standards community







## **Today's Landscape**

- Tailored for human end users
- Architecture optimized for access to content







### **Future Landscape**

- Increasingly used for machine-to-machine applications
- More complex systems architecture/optimization





## **Top Needs for 10-year Vision**

|         | Current State (2019)                                                                                         | 3 years (2022)                                                                                                  | 5 years (2024)                                                                                                                                                                                                                                        | Future State 10-years (2029)                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Need #1 | Dynamic discovery and<br>peering of heterogenous<br>resources                                                | ML-capable entities/fabrics                                                                                     | Architectural evolution for end-to-end<br>autonomic management and control                                                                                                                                                                            | Dynamic Semantics discovery and<br>negotiation: self-learning protocols to be<br>discovered at the point of attachment               |
| Need #2 | Static protocol and capability negotiation                                                                   | ML driven dynamic capability discovery and negotiation                                                          | Autonomic system behaviors with self-<br>optimized components that leverage<br>any achievements in this area                                                                                                                                          | Dynamic fabric allocation, optimization<br>and monetization with resources<br>contributed by multiple micro data<br>centers          |
| Need #3 | Dynamic capability negotiation                                                                               | ML driven policy federation across multiple jurisdictions                                                       | Autonomic policy negotiation and agreement                                                                                                                                                                                                            | Self-determination of federated domains                                                                                              |
| Need #4 | ISM, local (private) and<br>national license holder with<br>strict network & spectral<br>resource allocation | ML driven resource federation<br>and optimization                                                               | Al powered private network operation<br>and integration with a federated<br>network                                                                                                                                                                   | Development of new-look internet<br>technology with the federation of private<br>networks                                            |
| Need #5 | Need to have a model that<br>can model system dependency<br>and deadlocks                                    | Models that can predict the<br>systems performance based on<br>the schedules and available<br>systems resources | Model should be able to study and<br>detect behavioral properties such as<br>system deadlocks, investigate the<br>anomalies of specific schedules, and<br>then compare various schedules, such<br>as proactive, reactive, and concurrent<br>schedules | Tools that search for application- or<br>context-specific optimizations, such as<br>caching, proactive, or cross-layer<br>techniques |
| Need #6 | Testbed that can be used to<br>test various systems<br>optimization techniques                               | Federation of Testbeds by<br>connecting various testbeds at<br>various parts of the world                       | Augment the testbed capabilities to<br>demonstrate various types of<br>applications including augmented<br>reality and other low latency type<br>applications                                                                                         | Integration of some of the advanced techniques and enablers including AI/ML in the testbed.                                          |





|                                    | Current State (2019)                                                     | 3 years (2022)                                                                 | 5 years (2024)                                                             | Future State 10-years<br>(2029)                                                                                                  |
|------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Need #1                            | Dynamic discovery and<br>peering of heterogenous<br>resources            | ML-capable<br>entities/fabrics                                                 | Architectural evolution for end-to-end<br>autonomic management and control | Dynamic Semantics<br>discovery and<br>negotiation: self-<br>learning protocols to<br>be discovered at the<br>point of attachment |
| Challenge(s) for Need 1            | lack of entity as well as<br>functionality for<br>performing these tasks | computational<br>complexity, lack of<br>interfaces, lack of<br>data and models | Revolutionary changes in existing architecture                             | stays in contrasts to<br>today's protocols;<br>requires radical<br>changes in the<br>systems                                     |
| Possible Solution for<br>Challenge | introduction of a<br>fabric/multiple fabrics into<br>the system          | introduction of highly<br>efficient<br>entities/fabrics                        | self-optimized outer loop                                                  |                                                                                                                                  |





## **Challenges and Solutions to Meet Needs**

|                                    | Current State (2019)                                                                                       | 3 years (2022)                                                                                                                | 5 years (2024)                                                                                                                                                                                                                                                                               | Future State 10-years<br>(2029)                                                                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Need #2                            | Static protocol and capability negotiation                                                                 | ML driven dynamic<br>capability discovery<br>and negotiation                                                                  | Autonomic system behaviors with self-<br>optimized components that leverage<br>any achievements in this area                                                                                                                                                                                 | Dynamic fabric<br>allocation,<br>optimization and<br>monetization with<br>resources contributed<br>by multiple micro data<br>centers |
| Challenge(s) for Need 2            | can be performed locally,<br>but no end-to-end<br>performance guarantee                                    | Need for dynamics<br>ML-driven<br>solutions to<br>guarantee end-to-end<br>performance and<br>adapt to the network<br>dynamics | Definitions of autonomic systems, and<br>abstractions layers for control-loops<br>that close gaps in emerging standards<br>for autonomic networking and<br>autonomic management & control,<br>identification/introduction of self-<br>optimized components, modelling of<br>complex systems, | lack of solutions for<br>enabling and<br>implementing fully-<br>autonomous solutions;<br>guarantee of stability                      |
| Possible Solution for<br>Challenge | introduction of higher-level<br>fabric to<br>orchestrate/coordinate,<br>additional<br>interfaces/signaling | offline studies and<br>model development<br>and gradual<br>integration                                                        | Emergent intelligence solutions                                                                                                                                                                                                                                                              | Enhanced emergent<br>intelligence solutions                                                                                          |





### **Stakeholders**

- Stakeholders could include various verticals that are interested to improve efficiency, flexibility, and control latency for their operation during the deployment phase. These verticals could realistically include operators, enterprise networks, first responder, public safety, and tactical network community and app developers
- Involved SDOs include 3GPP, ETSI, TMF, NGMN, BBF, ITU-T and IETF and accompanying communities such as O-RAN and LF

### **Contributions from Working Group Members**

- Meryem Simsek
- Lyndon Ong
- Ashutosh Dutta
- Kaniz Mahdi
- Aarne Mammela
- Jens Voigt
- Ranganai Chaparadza

- Altran Capgemini
- Mohammad Patwary
- Pedro Martinez-Julia
- Muslim Elkotob
- Narang N. Kishor







#### 6/16/20

## **Next Steps**

- SysOpt Working Group Meetings
  - Biweekly Monday mornings at 8am PDT
  - Bring Your Research Ideas, Talks to discuss in the meeting
  - Initial talk from Aarne Mammela available at googledocs site
- Develop SysOpt white paper
  - Currently in draft with contributions from many members
- Sysopt Virtual Workshops and Tech Focus papers
- Industry and Standards Engagement





## **Cross Team Meeting Schedule for June 17 and 18** Please contact working group co-chairs for Webex link if you are interested to attend cross team meetings

Contacts: Sysopt Working Group Co-Chairs

Meryem Simsek:simsek@icsi.Berkeley.edu

Lyndon Ong:lyong@ciena.com

|          | Start Time  |                          |                      |                   |                          |                       |              |                           |                         |                |                        |
|----------|-------------|--------------------------|----------------------|-------------------|--------------------------|-----------------------|--------------|---------------------------|-------------------------|----------------|------------------------|
|          | 8:00 AM     | 9:00 AM                  | 10:00 AM             | 11:00 AM          | 12:00 PM                 | 1:00 PM               | 2:00 PM      | 3:00 PM                   | 4:00 PM                 | 5:00 PM        | 6:00 PM                |
|          | Apps & Svcs |                          |                      |                   | Apps & Svcs              |                       | EE           | Apps & Svcs               |                         | EE             |                        |
|          |             |                          |                      | FΔD               |                          |                       |              |                           |                         | Deployment     |                        |
| June 17  |             |                          |                      | Massive MIMO      | Security                 |                       | Standards    | Testbed                   |                         |                |                        |
|          |             | Satellite<br>Standards   | Satellite<br>Testbed |                   | Massive MIMO<br>Hardware |                       | Massive MIMO | Massive MIMO<br>Standards |                         |                | Deployment<br>CTU      |
|          |             |                          | Toolbou              |                   | Standards                | Sys Opt               | Doploymont   | Security<br>Svs Opt       |                         | CTU<br>Testhed | Sys Opt                |
|          |             |                          |                      |                   |                          | Satellite<br>Security | Satellite    | oys opt                   |                         | Testbed        | Testbed                |
|          |             |                          |                      | Security<br>AI ML |                          | occurry               |              |                           |                         |                |                        |
|          | Start Time  |                          |                      |                   |                          |                       |              |                           |                         |                |                        |
|          | 8:00 AM     | 9:00 AM                  | 10:00 AM             | 11:00 AM          | 12:00 PM                 | 1:00 PM               | 2:00 PM      | 3:00 PM                   | 4:00 PM                 | 5:00 PM        | 6:00 PM                |
|          |             | Apps & Svcs<br>Satellite |                      |                   | AI ML<br>EAP             | Apps & Svcs<br>EAP    |              |                           | Apps & Svcs<br>Securitv |                | Apps & Svcs<br>Svs Opt |
|          |             | AIML                     |                      |                   |                          |                       |              | EAP                       | EAP                     |                |                        |
|          |             | Massive MIMO             |                      |                   |                          | CIU                   | Standarda    | EE<br>Standarda           | Deployment              |                |                        |
|          |             |                          |                      |                   |                          | Tosthod               | Tostbod      | Scandarus                 |                         | EE<br>Sve Opt  |                        |
| Luno 10  |             |                          |                      |                   |                          | Testbeu               | Testbed      | Occurity                  | ΔΙΜΙ                    |                |                        |
| Julie To |             |                          |                      |                   |                          |                       |              |                           | Testbed                 |                |                        |
|          |             |                          |                      |                   |                          |                       |              |                           |                         |                |                        |
|          | 7           |                          |                      |                   |                          |                       |              |                           |                         |                |                        |





## **Get involved!**

#### **Working Group Members**

| Aarne Mämmelä        | Aarne.Mammela@vtt.fi           |  |  |  |  |
|----------------------|--------------------------------|--|--|--|--|
| Ashutosh Dutta       | ad37@caa.columbia.edu          |  |  |  |  |
| Brad Kloza           | b.kloza@ieee.org               |  |  |  |  |
| Farhan Aadil         | farhan.aadil@cuiatk.edu.pk     |  |  |  |  |
| Jens Voigt           | Jens.Voigt@amdocs.com          |  |  |  |  |
| John Keeney          | john.keeney@ericsson.com       |  |  |  |  |
| Kaniz Mahdi          | kmahdi@ciena.com               |  |  |  |  |
| Linda Wilson         | linda wilson1225@IEEE.ORG      |  |  |  |  |
| Lyndon Ong           | lyong@Ciena.com                |  |  |  |  |
| Meryem Simsek        | simsek@icsi.berkeley.edu       |  |  |  |  |
| Mohammad Patwary     | Mohammad.Patwary@bcu.ac.uk     |  |  |  |  |
| Muslim Elkotob       | Muslim.Elkotob@vodafone.com    |  |  |  |  |
| Nigel Davis          | ndavis@ciena.com               |  |  |  |  |
| Narang N. Kishor     | kishor@narnix.com              |  |  |  |  |
| Pedro Martinez-Julia | pedro@nict.go.jp               |  |  |  |  |
| Ranganai Chaparadza  | ran4chap@yahoo.com             |  |  |  |  |
| Sri Chandrasekaran   | sri.chandra@ieee.org           |  |  |  |  |
| Subhas Mondal        | subhas.mondal@wipro.com        |  |  |  |  |
| Sven van der Meer    | sven.van.der.meer@ericsson.com |  |  |  |  |
| Taichi Lee           | taichi@cht.com.tw              |  |  |  |  |

For additional information, contact the Systems Optimization WG Co-Chairs Meryem Simsek:simsek@icsi.Berkeley.edu Lyndon Ong:lyong@ciena.com If you would like to join the working group please send mail to: 5GRM-sysopt@ieee.org





# **QUESTIONS?**



Enabling 5G and Beyond | FutureNetworks.ieee.org/roadmap

