## **IEEE 5G Education**

### **Mobile Ecosystem Overview**

July 28<sup>th</sup>, 2018

Narendra Mangra, GlobeNet

### **Mobile Ecosystem Overview**



### **Wireless Communications Background**

### **Changing perceptions of radio communications**



### **1G to 5G Mobile Communications**



#### **Global Mobile Wireless Penetration Rates**



### **Mobile Broadband Ecosystem**

### **Mobile Broadband Ecosystem Description**

#### **Mobile Ecosystem**

Companies may belong to a mobile ecosystem may span several industries, e.g. mobile network operators in the wireless broadband access ecosystem that participate in several industries such as smart cities, connected vehicles, connected health, smart grids, etc

Companies in a business ecosystem may

- Coevolve capabilities around a new innovation:
- Work cooperatively and competitively to support new products, and satisfy customer needs,
- Incorporate the next round of innovations

#### Industries

Group of firms providing close substitutes for each other

#### **Industry boundaries**

- Defining the boundaries is a matter of choice
- Separate from defining a strategy or where the firm wants to compete

### **Mobile Broadband Ecosystem Sectors**

#### **Mobile Broadband Sectors**

- Academia, e.g. new research
- Device Manufacturers, e.g. handset manufacturers
- Application Developers, e.g. App Store Developers
- Operating System, e.g. iOS, Android
- Spectrum Access / Regulatory Agencies, e.g. FCC, incumbents
- Industry Groups / Standard Bodies, e.g. 3GPP, IEEE
- Communication Facilities, e.g. tower companies
- Backhaul Providers, e.g. fiber companies, cable companies,
- Communications Infrastructure, e.g. equipment vendors
- Communications Support Systems, e.g. business & operation support companies

#### **Adjacent Industries**

- Smart Homes
- Smart Cities
- Public Safety Communications
- Connected Vehicles / Telematics
- Connected Health / Telehealth
- Mobile Money / Fintech
- Internet of Things (IoT) / Machine to Machine (M2M) Communications
- Electricity / Smart Grid

### End to End Mobility Overview

#### Critical Communications **Broadband Communications Ecosystem** • Enhanced Mobile Broadband Network Operations Enhancement of Vehicle-to-Everything Satellite simplified View Spectrum User Backhaul BSS/OSS Equipment Urban External Networks Core Network Cell Cellular Rural Cell WiFi Suburban Cell Network Extensions Spectrum Backhaul

- 5G Global Harmonized Spectrum
- Country / Operator Spectrum ٠

#### Devices

- Human Interface Devices: Mobile Phones
- MTC / IoT Sensors

#### **Radio Access**

- Cellular: 5G NR, 4G LTE, V2V
- WLAN: 802.11 (WiFi), DSRC ٠
- Mobile Satellite Systems ٠

#### Facilities

- Cells: Macro, Small (Micro, Pico, Femto) ٠
- Structures: Towers, Buildings, Street Furniture

- Fiber
- Microwave, including 5G Fixed Wireless ٠

#### Core Network

- Network Slicing
- Technology / Link Aggregation ٠
- Traffic / Congestion Management, e.g. SDN
- Policy Control ٠
- Communications Interoperability ٠

#### BSS/OSS

- Data Analytics ٠
- Business / Technical Operations, e.g. SLAs,
- Domestic / International Roaming Support (Data / Financial Exchanges)

Roaming •

**5G Enhancements** 

- Smart Cities Platforms
- Connected Vehicles
- Public Safety Communications •

Massive Machine Type Communications (MTC)

- MTC / IoT •
- **Connected Health**
- Mobile Money •
- Smart Buildings
- Smart Grids

### **Spectrum**

Spectrum affects existing service providers and potential entrants

- Existing Service Providers: network deployment, capacity expansion
- New entrants: market entry into a geographic area.

#### Mobile spectrum bands vary in their propagation characteristics

- Low Band Spectrum ( <1 GHz): better suited for network deployment over long distances, penetrating buildings and urban canyons
- Mid Band Spectrum (between 1 GHz and 6 GHz): better suited for a balance of coverage & capacity for rural, remote and underserved areas.
- **High Band Spectrum** (> 6GHz): high capacity usage especially in urban areas

#### **US Mobile terrestrial spectrum**

- Existing: 700 MHz, 850 MHz (cellular), 1900 (PCS), 1700 / 2100 MHz (AWS), 2300 MHz (WCS), 3600 (BRS)
- Recent: 600 MHz, 3.5 GHz (CBRS shared spectrum)
- Upcoming (est Nov 2018): Auction 101 (28 GHz), Auction 102 (24 GHz)

### **US Geographical Licensing Areas**







Spectrum licenses are typically based on different groupings of contiguous counties. Frequencies impact the number of cell sites required.

Selected Licensing Areas •MTA/BTA – PCS •CMA / MSA/RSA – Cellular, 700 MHz •EA – AWS, 700 MHz •PEA – 600 MHz GlobeNet •REAG – AWS, 700 MHz

12

### **US Communications Facilities and Mobile Service**



| Number of<br>Service<br>Providers | Population<br>Covered (%) | US Road Miles<br>Covered (%) | % US Square Miles<br>Covered (%) |
|-----------------------------------|---------------------------|------------------------------|----------------------------------|
| 1 or more                         | 99.7                      | 92.6                         | 72.7                             |
| 2 or more                         | 99.0                      | 83.6                         | 60.0                             |
| 3 or more                         | 96.6                      | 69.4                         | 44.3                             |
| 4 or more                         | 88.5                      | 45.4                         | 22.9                             |

| Nationwide Service<br>Providers | Median<br>Download<br>Speed<br>(Mbps) |
|---------------------------------|---------------------------------------|
| Crowdsourced                    | 9.5 - 15.7                            |
| Stationary / Drive<br>Testing   | 7.6 - 16.7                            |

#### Average US Monthly Voice Usage: 2016: 722 MoU 2015: 760 MoU 2014: 671 MoU

Average US Monthly Data Usage: 2016: 3.9 GB 2015: 2.9 GB 2014: 1.4 GB

LTE service is available in most of the US population centers.

Rural Areas & Local Roadways may lack coverage!

Wireless service provider services vary due factors such as:

- Spectrum Availability primary or secondary markets
- Addressable Market population density, vehicular traffic, critical areas, etc
- **Technology** satellite and terrestrial fixed / mobile technologies
- Physical Characteristics signal propagation, clutter, etc
- Leasing & Zoning zoning rules differ among jurisdictions.
- Construction Structurals, NEPA, SHPO, etc
- **Regulatory** FCC, FAA

#### Source: FCC 20th Mobile Wireless Competition Report

Narendra Mangra

### **Consumer Complaints**



Qtr1

Qtr2

2015

Qtr3

Qtr4

Qtr1

0

2016

Qtr3

Qtr4

Qtr1

Qtr2

Qtr4

Source: FCC

Qtr2

2017

Qtr3

### **System Architectures**

### 4G Long Term Evolution (LTE)



Source: 3GPP TS36.300

### **Satellite and WLAN Systems**

#### **Mobile Satellite Systems Architecture**





#### **WLAN Network Architecture**



Stations communicate directly with each other.

Meshed Networks contains low mobility nodes and may include routers



Stations communicate with each other through an access point (AP).

### **5G Vision**

#### Usage scenarios of IMT for 2020 and beyond



Source: ITU M.2083 : IMT Vision - "Framework and overall objectives of the future development of IMT for 2020 and beyond", Sep 2015



### **5G Network Architecture**



Sources: 3GPP TS 23.501, ITU GSTR-TN5G

5G accommodates NR, LTE, and non-3GPP systems such as satellite and WLAN access

### **Network Element Softwarization & Programmability Viewpoint**



Network Softwarization and Enablers:

- Network Function Virtualization (NFV)
- Software-Defined Networking (SDN)
- Service Function Chaining
- Network Slicing and Network
   Virtualization

Transition from today's "network of entities" towards a "network of functions".

Source: View on 5G Architecture v 2.0, 5GPPP Architecture Working Group, Dec 2017

### **5G Use Case Categories**

#### **Enhanced Mobile Broadband (eMBB) Use Case Categories**

#### User Experienced Data Rate (Mbps)



#### Traffic Density (Gbps/km<sup>2</sup> or Gbps/vehicle)



Connection Density (users/km<sup>2</sup> or users/vehicle)



**5G Drivers:** High data rate, low latency, traffic density, connection density, varying levels of mobility

5G Deployments: Indoor/Outdoor Local and Wide Area Connectivity

**Fixed Mobile Convergence**: combined use of fixed broadband access, e.g. fiber, and 5G access network.

**Femtocell Deployment**: seamless user experience over radio access and Femtocell access using fixed broadband networks.

Source: 3GPP TS 22.261

#### **Critical Communications Use Case Categories**



#### Traffic and Connection Densities per km<sup>2</sup>



#### **Other Considerations**

- Availability, e.g. deployables
- Reliability, e.g. industrial control, drone connectivity
- Positioning Accuracy, e.g. connected vehicles

**5G Drivers:** Low latency, reliability, traffic density, position accuracy

**Mission Critical Services:** critical communications that may require a higher communications priority, e.g. first responders, disasters.

### Massive IoT & eV2X Use Case Categories

- **5G Drivers**: Communications efficiency, traffic density, communications density, position accuracy
- **Operational**: network servers/applications and devices support to identify and reach each other, IoT security
- **Connectivity**: Direct 3GPP connection (e.g., a sensors), indirect 3GPP connection (e.g., a smart wearable communicating via a smart phone), direct device connection (e.g., a biometric devices that communicate directly with other biometric devices.
- **Resource Efficiency**: include bulk provisioning, resource efficient access, optimization for device originated data transfer, and mobility management efficiencies for stationary or limited mobility devices.
- **5G Drivers:** High data rate, low latency, reliability, traffic density, connection density, varying levels of mobility, high position accuracy
- **Vehicles Platooning**: All the vehicles (may be autonomous) in the platoon receive periodic data from the leading vehicle.
- **Advanced Driving**: enables semi-automated or fully-automated driving. Vehicles and/or RSU shares data obtained from its local sensors with vehicles in proximity,.
- **Extended Sensors**: enables data exchanges from local sensors or live video data among vehicles, RSUs, devices of pedestrians and V2X application servers.
- **Remote Driving**: enables a remote driver or a V2X application to operate a remote vehicle.

eV2X

Massive Internet of Things (MIoT)

# Business & Operational Support Systems (BSS/OSS)

### **Business and Operations Support Systems (BSS/OSS)**



Source: ITU



#### **Next Generation BSS/OSS**

Seamless Customer Experience
Dynamic Real Time OSS
Application Programming Interface (API) Development
Network evolution (SDN / NFV, 5G, IOT)

Additional details may be found at ETSI, MEF, and TM Forum

GlobeNet

### **Domestic and International Roaming**



Mobile Subscriber Devices:

- Service Areas
- Mobile Technologies
- Device Capabilities (UE Categories)
- Spectrum Bands (US and international)

#### Service Providers

- Roaming Agreements
  - One-way
  - Bilateral
  - Roaming Hubs
- Financial Exchanges
- Data Exchanges

### **Summary & Conclusion**

5G may be viewed as a decoupled network of networks. Opportunities for new business models.

5G may be deployed in several spectrum bands subject to regulatory and service provider considerations, i.e. low, mid, and high band spectrum.

End to end system deployment requires different skillsets and different technologies, e.g. spectrum, RAN, Transport, Core, BSS/OSS, site deployments, etc

Network slicing, NFV, SDN, and APIs may create new business models and applications.

## Q & A

### IEEE 5G Education https://5g.ieee.org/education