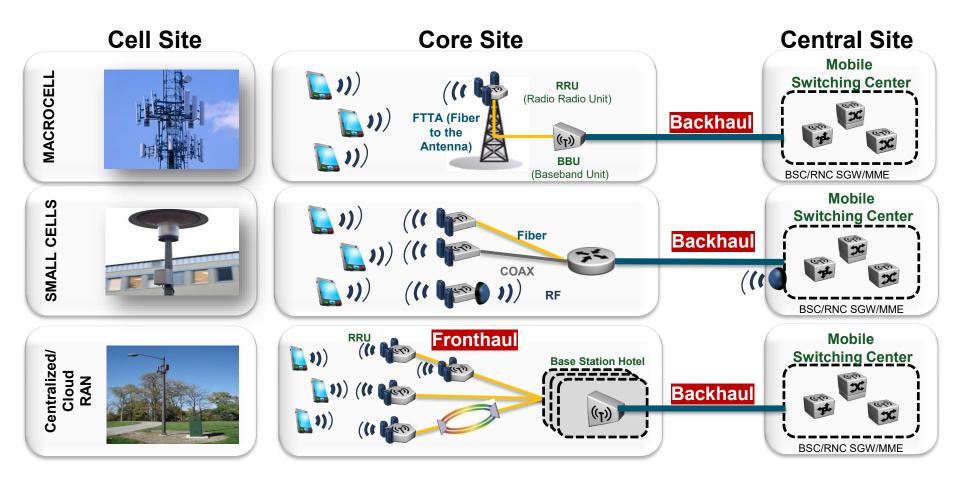
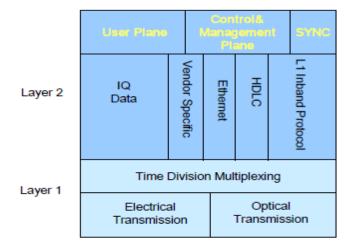


Emerging 5G Transport Networks


March 2019 Reza Vaez-Ghaemi, Ph.D.

What is 5G?

- eMBB: much higher bandwidth
- uRLLC: extremely low latency
- mMTC: very large number of low power end points


Definition Backhaul, Fronthaul, CRAN

CPRI Specification

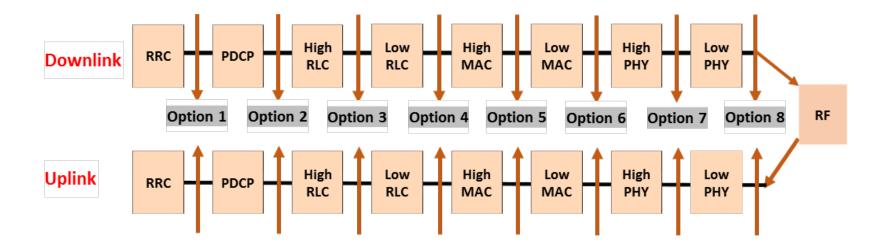
- 4G Fronthaul Uses Common Public Radio Interface (CPRI)
- CPRI protocol defines the layer 1 and elements of layer 2
 - Sync
 - Alarms
 - Encoding

0	
Option	Rates (Mbps)
1	614.4
2	1228.8
3	2457.6
4	3072.0
5	4915.2
6	6144.0
7A	8110.1
7	9830.4
8	10137.0
9	12165.1
10	24330.2

VIAVI

4

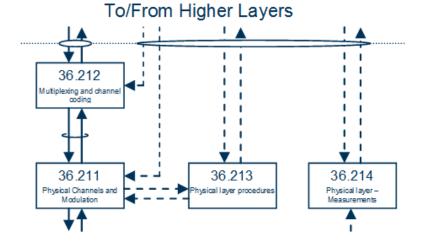
4G Fronthaul Challenge


- CPRI Technology can be scaled up to a certain level with WDM and OTN
- Bandwidth requirements increase with number of antennas and signal bandwidth
- CPRI may not meet the requirements of massive MIMO applications

Antenna	10 MHz	20 MHz	100 MHz
1	0.49 Gbps	0.98 Gbps	4.9 Gbps
2	0.98 Gbps	1.96 Gbps	9.8 Gbps
4	1.96 Gbps	3.92 Gbps	19.6 Gbps
64	31.36 Gbps	62.72 Gbps	313.6 Gbps

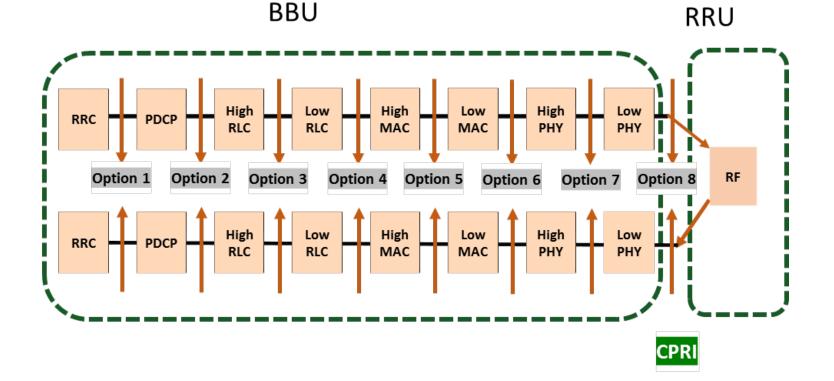
Source: China Mobile

Functional Split Options

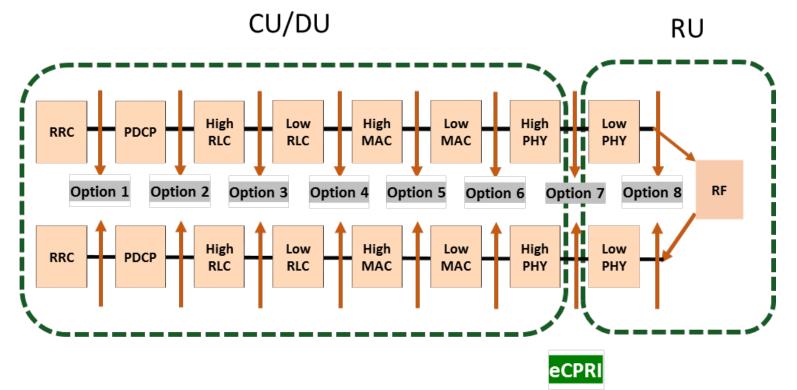

- Solving the bandwidth problem of 4G requires redistribution of functions between BBU and RRH
- Backhaul network interfaces with BBU (S1) which holds most functions from RRC to PHY
- RRH hosts the RF functions

Radio Layer Functions

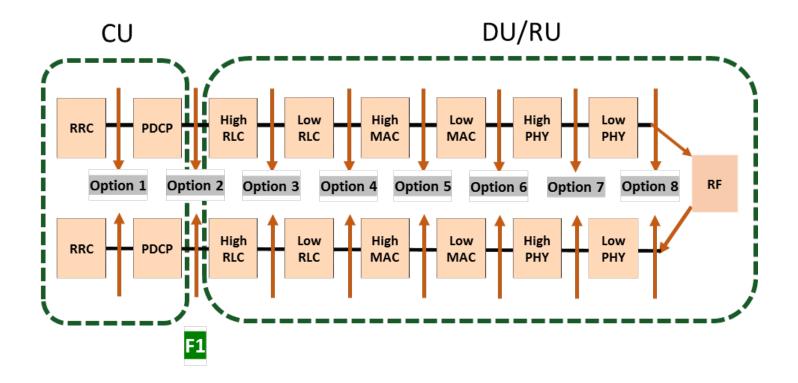
- RRC (3gpp TS 36.331/38.331)
 - Radio Resource Control
 - Broadcast of general control info, Ue notification on terminating a call
- PDCP (3gpp TS 36.323/38.323)
 - Packet Data Convergence Protocol
 - Data transfer, header compression, ciphering, integrity protection
- RLC (3gpp TS 36.322/38.322)
 - Radio Link Control
 - Data transfer UM, AM, TM
 - ARQ Error Correction
 - Re-segmentation & reassembly


- MAC (3gpp TS 36.321/38.321)
 - Media Access Control
 - Data transfer, radio resource allocation, HARQ, mapping of logical and transport channels
- PHY (3gpp TS 36.2xx/38.2xx)
 - Physical layer

VIAVI

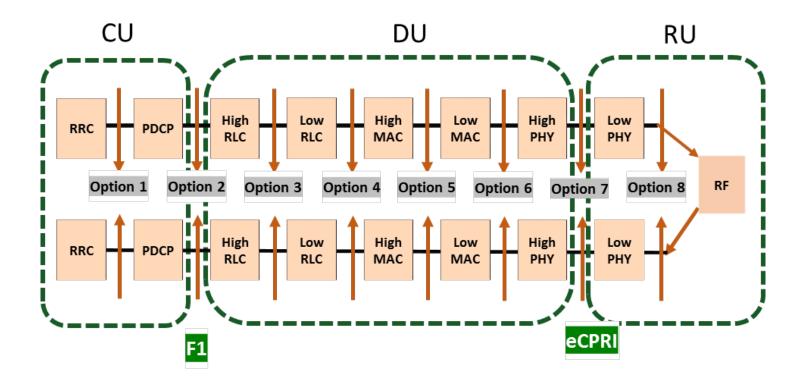

Functional Split 4G

- Current split (8): all intelligence in BBU
- Option 8: primarily CPRI (or OBSAI)
- Optimal for central processing and coordination of radios
- Bandwidth propositional to number of antennas -> high bandwidth
- CPRI has limited latency budget (< 100 us) -> Limited distance

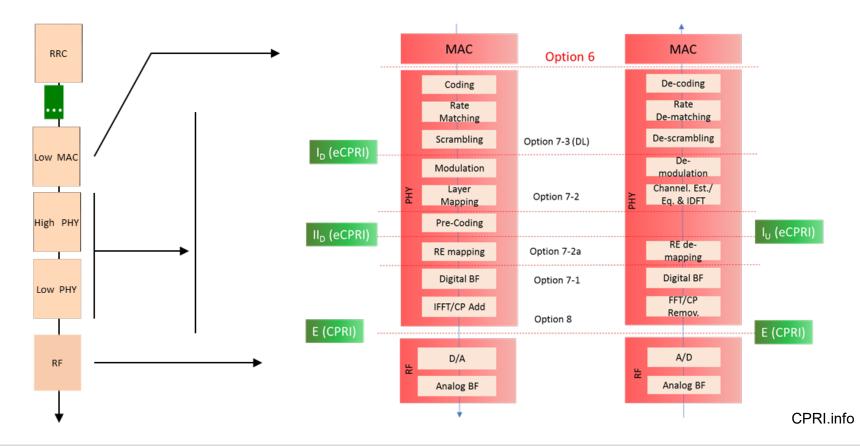

Lower Layer Split

- Low Phy moves to RU -> saving bandwidth
 - Not proportional to antenna #
- Optimized for central processing and coordination of radios -> mobility
- Moving Low Phy to RRU makes the interface more complicated (control data exchange with DU) -> adds processing power, heat, and costs to RRU

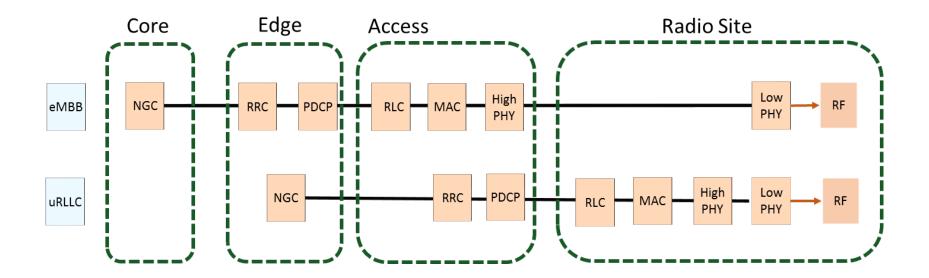
Higher Layer Split


- Large portion of BBU moves to RU -> saving lots of bandwidth
- Optimized for high bandwidth application that don't need mobility -> Fixed wireless access
- Delay budget much larger (than lower layer split): 4-10 ms
 -> much larger distance possible

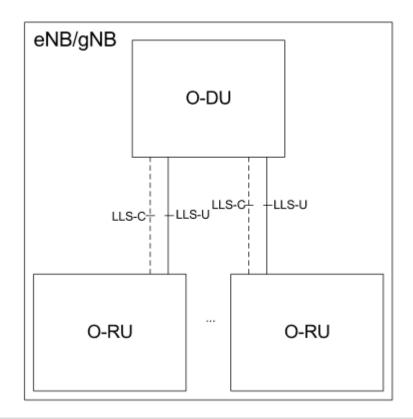
10


Double Split

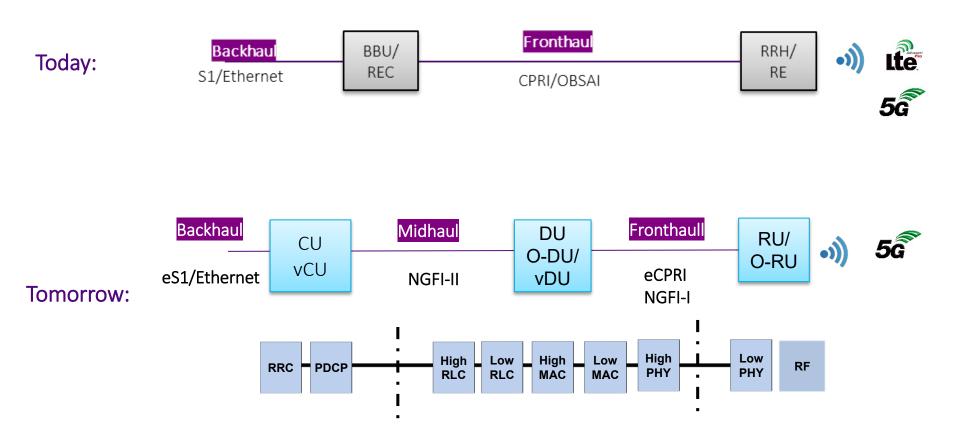
- Centralized unit can be virtualized over time in larger data center farther away from cell sites
- Optimized for mobility and ultra low latency applications
- CU located in data center, and run on NFV infrastructure
 - Reduces cost, improves scalability


PHY Split

- Low Phy: different options possible
- Option 7-3 has the lowest BW requirements
- Option 7-1: simple DU design
- eCPRI recommends two options for downlink and one for uplink


Network Slicing

- Different applications require different splits and geographic locations
- Network slicing allows using the same physical infrastructure for multiple applications



ORAN

- Enables interoperability between DU and RU from different vendors
- Major operators and vendors (and Viavi) sponsoring
- First products to hit market 2H CY2019 (Nokia and possibly others)
- Based on eCPRI (but can also work with RoE)

Evolving xhaul Networks

NGFI: IEEE 1914.1

eCPRI Physical layer

- eCPRI does not mandate any physical layer
- Ethernet PHY and OTN can be valid options
- Most volumes are expected to be Ethernet
- eCPRI physical line rates from 10G to 100G
- Most of the volumes are expected to be 10G initially,
- 25/40GE starting to show up in vendor and SP designs
- 100GE (LR) expensive for a radio interface at this time
- Transport SLA's are stringent, for example delay < 100 us

Use case	Standard / Interface Type	#Lanes	Signal Rate per Lane
Optical	10GBASE-SR/LR/ER ([5], clause 52)	1	10G
	10GBASE-LRM ([5], clause 68)	1	10G
	25GBASE-SR ([6])	1	25G
	40GBASE-SR4 LR4/ER4 ([5], clauses 86/87)	4	10G
	100GBASE-SR10 ([5], clause 86)	10	10G
	100GBASE-SR4/LR4/ER4 ([5], clauses 95/88)	4	25G

Table 3: Common Ethernet interface types for the given use cases

CPRI.info

eCPRI Message Types

- eCPRI provides for different message formats
- IQ data format depends on split option:
 - Split E: Time Domain IQ
 - Split I_U, I_D: Frequency Domain IQ
- Split E is simple, but requires much higher BW
- Split I_U, I_D requires much less BW, but are more complex
- Most messages are vendor specific
- Xran/ORAN aims for interoperability

Ethertype (AEFE₁₆)

Message Type #	Name	Section
0	IQ Data	3.2.4.1
1	Bit Sequence	3.2.4.2
2	Real-Time Control Data	3.2.4.3
3	Generic Data Transfer	3.2.4.4
4	Remote Memory Access	3.2.4.5
5	One-way Delay Measurement	3.2.4.6
6	Remote Reset	3.2.4.7
7	Event Indication	3.2.4.8
8 - 63	Reserved	3.2.4.9
64 - 255	Vendor Specific	3.2.4.10

Table 4: eCPRI Message Types

CPRI.info

eCPRI Transport Requirements

- Latency and Packet Loss Ratio
- Different SLA's for user plane and C&M
- Different classes for User Plane (normal and slow) and C&M (fast and normal)

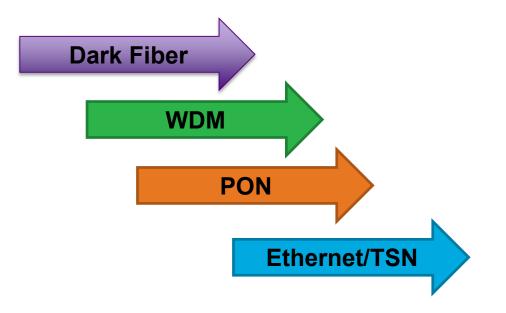
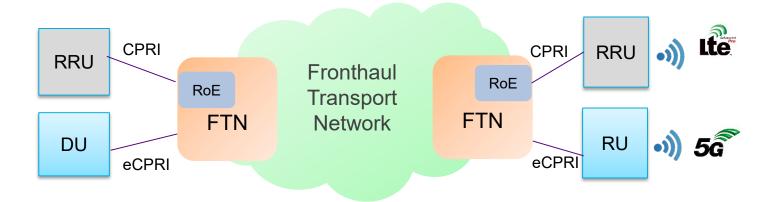

CoS Name	Example use	One way maximum packet delay	One-way Packet Loss Ratio
High	User Plane	100 µs	10 ⁻⁷
Medium	User Plane (slow), C&M Plane (fast)	1 ms	10 ⁻⁷
Low	C&M Plane	100 ms	10 ⁻⁸

Table 1 Split E and splits ID, ID, IU requirements

Fronthaul Transport Networks

- Fronthaul networks initially deploy dark fiber
- Leading operators will deploy WDM in higher volume
- PON technologies may deliver better efficiency, but require adjustment
- SPN/FlexE/TSN will be the next step


xhaul Transport Networks

- SLAs for midhaul are similar to backhaul
 - -> Similar transport network technology for mid- and backhaul
 - -> Ethernet over WDM
- SLAs for fronthaul much more stringent
 - -> Initially Dark Fiber and WDM
 - -> NG-PON and TSN in future
 - -> China already experimenting with TSN/FlexE/SPN in Fronthaul

Fronthaul Transport Networks

- Fronthaul Transport Nodes (FTN) carry CPRI and eCPRI traffic
- Initially CPRI and eCPRI carried over separate wavelengths or fiber
- Future: CPRI and eCPRI carried over same wavelength/fiber
 - Necessitates Radio over Ethernet (RoE/IEEE 1914.3) to convert CPRI to Ethernet

IEEE 802.1cm: Timing Sensitive Networks

- IEEE 802.1cm describes fronthaul and synchronization requirements
- It defines features and options for two classes of fronthaul traffic
 - Class 1: CPRI (Split option 8) IEEE 802.1cm

Flow	Latency	Frame Loss Ratio
IQ	100 µs	10-7
C&M	No requirement	10-6

- Class 2: eCPRI (Split option 7)
 - Requirements for split options E, I_D, II_D, and I_U (eCPRI Transport Networks)

CoS Name	Flow		Latency		Frame Loss Ratio
High	User Plane	User Plane (fast)		le below	10-7
Medium	User Plane	(slow) and, C&M Plane (fast)		1 ms	10-7
Low	C&M	C&M		.00 ms	10-6
Flow	Latency	Use case			
High25	25 µs	Ultra-low latency			
High100	100 µs	E-UTRA and NR			
High200	200 µs	For installation up to 40 km			
High500	500 µs	Large latency installations			

IEEE 1914.1: Packet-based Fronthaul Transport Network

- Architecture for the transport of mobile fronthaul traffic
- Analyzes different functional splits
- Purpose:
 - enables critical 5G use cases such as mMIMO, CoMP, CRAN
 - simplifies network design, lowers costs by leveraging mature Ethernet-based solution
 - Fronthaul architecture: unified management & control, common networking protocol and network elements -> migration to C-RAN/V-RAN
 - Improves bandwidth efficiency, network scalability, sync performance and supports cooperative radio modes

3gpp Synchronization Requirements

- 3gpp technical specs such as 36.104/38.104
- SLA's derived from Time Alignment Error TAE
 - TAE: Largest timing difference between two antenna
- Different categories dependent on wireless service needs

3GPP feature	RAN		
SGFF leature	LTE	NR	
MIMO or TX-diversity transmission	Category A+	Category A+	
Intra-band contiguous carrier aggregation	Category A	BS Type 1: Category B BS Type 2: Category A	
Intra-band non-contiguous carrier aggregation	Category B	Category C	
Inter-band carrier aggregation	Category B	Category C	
TDD	Category C	Category C	
Dual Connectivity	Category C	Category C	
COMP	Not specified in 3GPP	Not ready in 3GPP	
Supplementary Uplink	Not applicable for LTE	Not ready in 3GPP	
In-band Spectrum Sharing	Not ready in 3GPP	Not ready in 3GPP	
Positioning	Not specified in 3GPP	Not ready in 3GPP	
MBSFN	Not specified in 3GPP	Not ready in 3GPP	

eCPRI Synchronization Requirements

- SLA's derived from Time Alignment Error TAE
- SLA's defined in terms of absolute Time Error |TE|
 - TE: time difference against a reference (absolute) or between two radios (relative)
- Category C: defines absolute TE
- Category A+, A, B: define relative & absolute TE
- Variations in TE: depend on implementation of timing functions such as Telecom Slave Clock

Category	Time Error
A+ (relative)	20-32 ns
A (relative)	60-70 ns
B (reltive)	100-200 ns
C (absolute)	1100 ns

White Paper: Timing and Synchronization Standards in Wireless Networks

Summary

- 5G poses stringent requirements for latency and bandwidth for xhaul networks
- New functional split options will be necessary for mobile broadband and fixed wireless access services
- Dark fiber and WDM will be dominant in early 5G xhaul networks
- Timing Sensitive Networks (TSN) will become essential for volume deployments in 5G xhaul
- Xhaul Networks must be properly characterized for bandwidth, latency and synchronization.