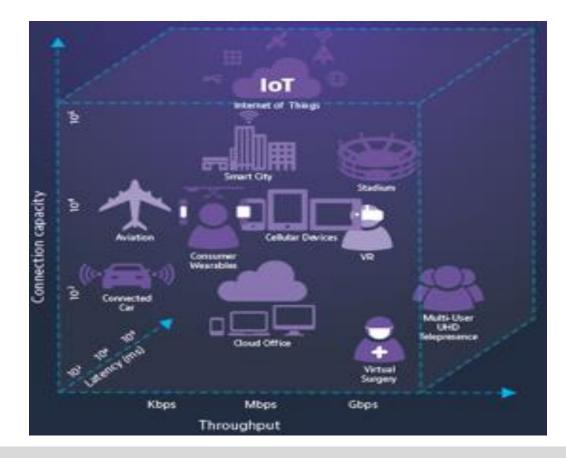
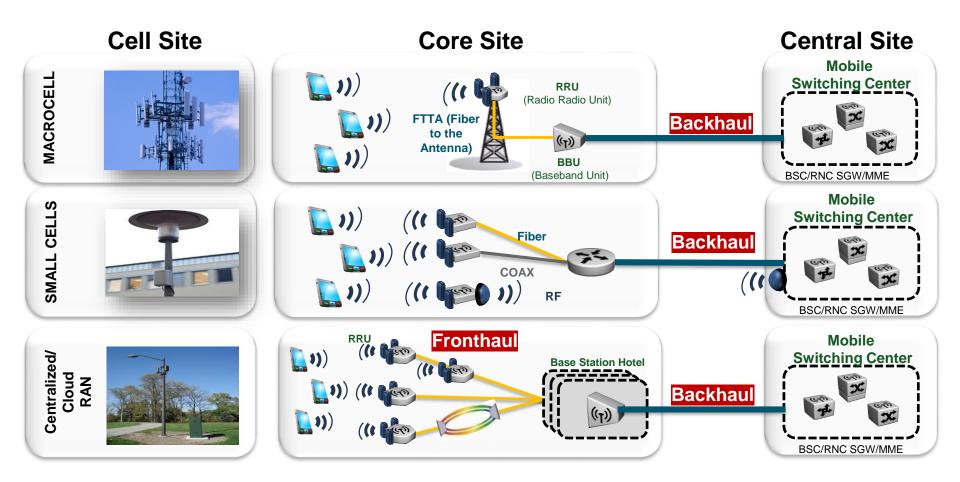
IEEE Future Networks

Optical Transport Networks

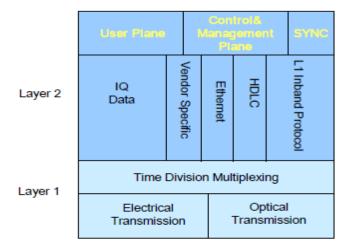

VIAVI

VIAVI Solutions


Reza Vaez-Ghaemi, Ph.D. February 2020

What is 5G?

- eMBB: much higher bandwidth
- uRLLC: extremely low latency
- mMTC: very large number of low power end points


Definition Backhaul, Fronthaul, CRAN

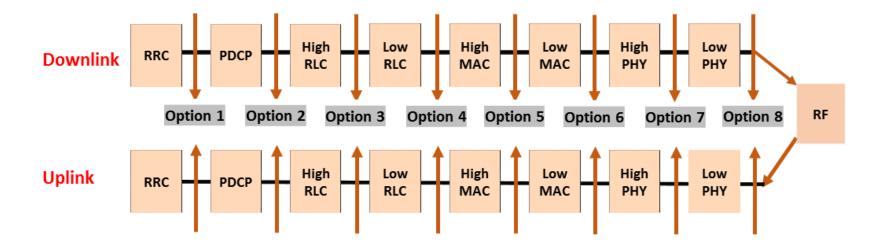
CPRI Specification

- 4G Fronthaul Uses Common Public Radio Interface (CPRI)
- CPRI protocol defines the layer 1 and elements of layer 2
 - Sync
 - Alarms
 - Encoding

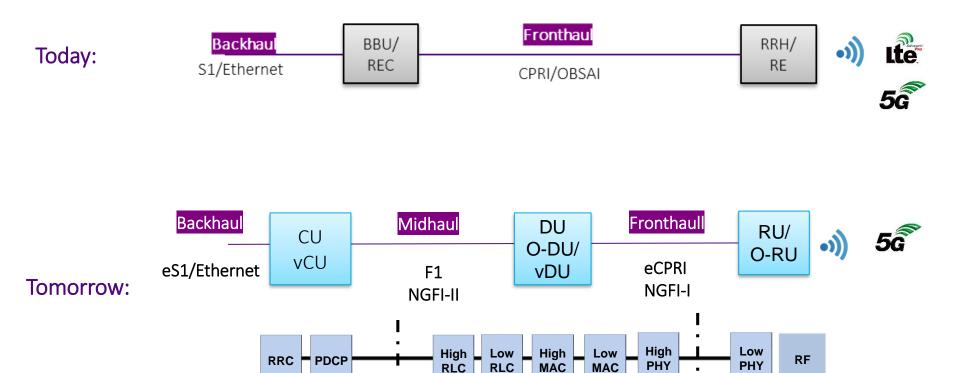
O			
Option	Rates (Mbps)		
1	614.4		
2	1228.8		
3	2457.6		
4	3072.0		
5	4915.2		
6	6144.0		
7A	8110.1		
7	9830.4		
8	10137.0		
9	12165.1		
10	24330.2		

VIAVI

4G Fronthaul Challenge


- CPRI Technology can be scaled up to a certain level with WDM and OTN
- Bandwidth requirements increase with number of antennas and signal bandwidth
- CPRI may not meet the requirements of massive MIMO applications

Antenna	10 MHz	20 MHz	100 MHz
1	0.49 Gbps	0.98 Gbps	4.9 Gbps
2	0.98 Gbps	1.96 Gbps	9.8 Gbps
4	1.96 Gbps	3.92 Gbps	19.6 Gbps
64	31.36 Gbps	62.72 Gbps	313.6 Gbps


Source: China Mobile

Functional Split Options

- Solving the bandwidth problem of 4G requires redistribution of functions between BBU and RRH
- Backhaul network interfaces with BBU (S1) which holds most functions from RRC to PHY
- RRH hosts the RF functions

Evolving xhaul Networks

NGFI: IEEE 1914.1

eCPRI Physical layer

- eCPRI does not mandate any physical layer
- Ethernet PHY and OTN can be valid options
- Most volumes are expected to be Ethernet
- eCPRI physical line rates from 10G to 100G
- 25/40GE starting to show up in vendor and SP designs

Use case	Standard / Interface Type	#Lanes	Signal Rate per Lane
Optical	10GBASE-SR/LR/ER ([5], clause 52)	1	10G
	10GBASE-LRM ([5], clause 68)	1	10G
	25GBASE-SR ([6])	1	25G
	40GBASE-SR4 LR4/ER4 ([5], clauses 86/87)	4	10G
	100GBASE-SR10 ([5], clause 86)	10	10G
	100GBASE-SR4/LR4/ER4 ([5], clauses 95/88)	4	25G

Table 3: Common Ethernet interface types for the given use cases

CPRI.info

eCPRI Transport Requirements

- Latency and Packet Loss Ratio
- Different SLA's for user plane and C&M
- Different classes for User Plane (normal and slow) and C&M (fast and normal)

CoS Name	Example use	One way maximum packet delay	One-way Packet Loss Ratio
High	User Plane	100 µs	10 ⁻⁷
Medium	User Plane (slow),	1 ms	10 ⁻⁷
	C&M Plane (fast)		
Low	C&M Plane	100 ms	10-8

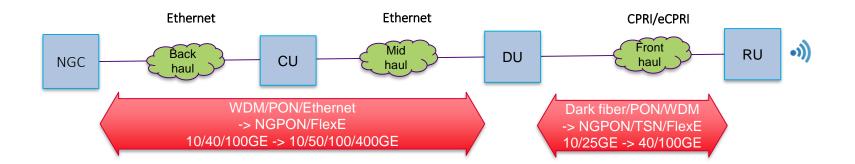
Table 1 Split E and splits ID, ID, IU requirements

CPRI.info

IEEE 802.1cm: Timing Sensitive Networks

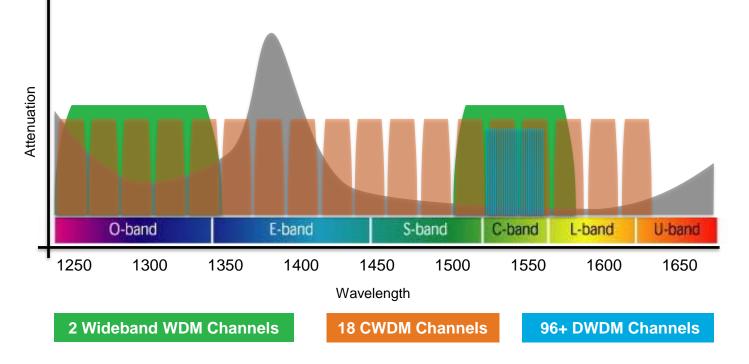
- IEEE 802.1cm describes fronthaul and synchronization requirements
- Verification of latency and frame loss ratio essential for fronthaul traffic
- It defines features and options for two classes of fronthaul traffic
 - Class 1: CPRI (Split option 8) IEEE 802.1cm

Flow	Latency	Frame Loss Ratio
IQ	100 µs	10-7
C&M	No requirement	10-6

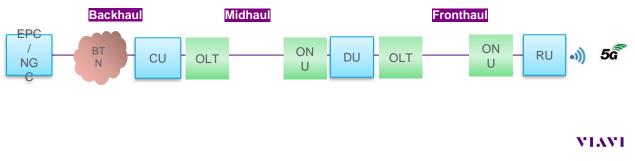

- Class 2: eCPRI (Split option 7)
 - Requirements for split options E, I_D, II_D, and I_U (eCPRI Transport Networks)

CoS Name	Flow			Latency	Frame Loss Ratio	
High	User Plane (fast)		Plane (fast) Table		10-7	
Medium	User Plane (slow) and, C&M Plane (fast)		&M Plane (fast) 1 ms		10-7	
Low	C&M			100 ms	10-6	
Flow	Latency	Use case				
High25	25 μs	Ultra-low latency				
High100	100 µs	E-UTRA and NR				
High200	200 µs	For installation up to 40 km				
High500	500 µs	Large latency installations				

xHAUL Transport Network Technologies

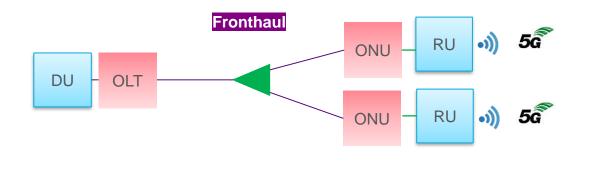

- Backhaul and Midhaul
 - Bandwidth -> Big Pipes
 - WDM, PON or switched/routed network
 - FlexE in future

- Fronthaul:
 - Latency/jitter -> Delay sensitive
 - Initial deployments: Dark fiber and WDM
 - Future: NG-PON and TSN/FlexE


WDM Technologies

- Wideband WDM channels spaced ~100 nm apart
- CWDM channels are spaced 20 nm apart
- DWDM channels are spaced ~0.4 to 0.8 nm apart
- DWDM enables a much higher density, therefore a better usage of the fiber
- Characterize the wavelengths and respective attenuation level

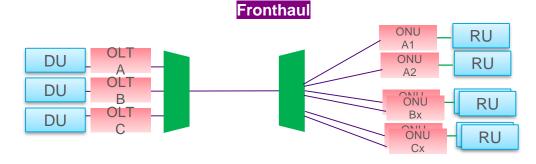
PON in xhaul networks


- PON networks can be planned for different use cases in access networks:
 - Convergence vs. wireless only:
 - Legacy TDM PON with overlay WDM for converged fixed/wireless networks
 - Dedicated PON for (only) wireless networks
 - Lower layer split (fronthaul/Fx) vs. higher layer split (midhaul/F1) vs. mixed fronthaul/midhaul

BTN: Backhaul Transport Network

TDM PON in fronthaul (latency sensitive) networks

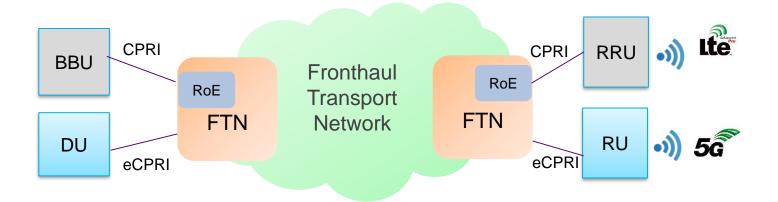
- TDM PON: challenge: upstream latency in several ms range!
- Need to reduce upstream latency:
 - Differentiated services: prioritize fronthaul traffic above all others
 - Dynamic Bandwidth Allocation (DBA): considers dynamic upstream traffic and buffer status
 - Cooperative DBA: OLT and DU/CU coordinate to determine the optimal upstream bandwidth



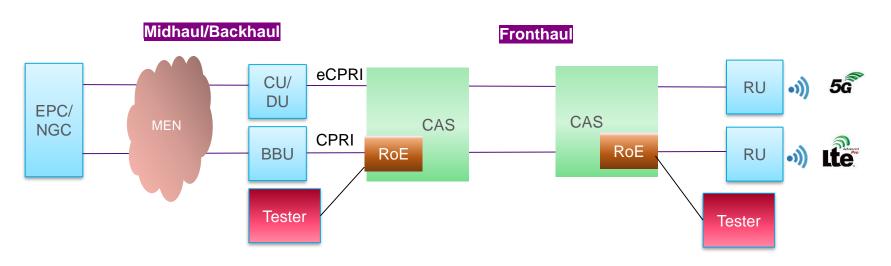
VIAVI

(T)WDM PON in fronthaul (latency sensitive) networks

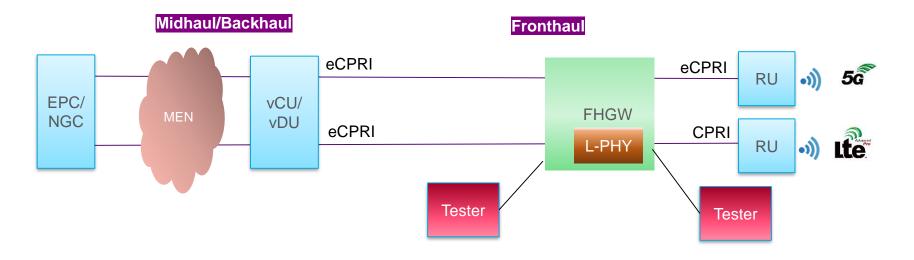
- WDM PON
 - Path loss: fiber + mux/demux + connectors
 - Link distance: mostly below 10 km
 - Delay: fiber transmission + WDM processing
 - Separate links for data, management, and synchronization (SyncE/PTP)
 - Bidirectional optics preferred for saving fiber and operational/fiber management costs.


-> Advances in PON technologies are making them an attractive choice for xhaul networks.

VIAVI


Fronthaul Transport Networks

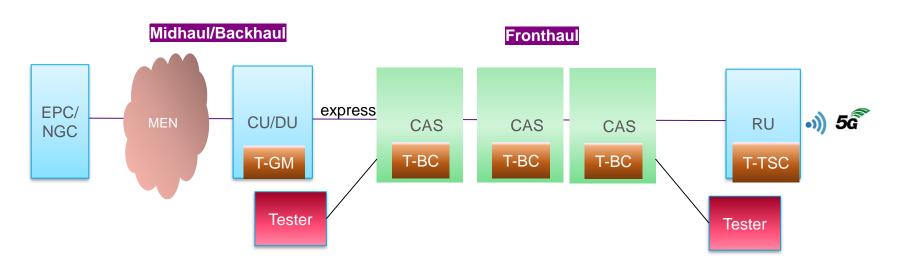
- Fronthaul Transport Nodes (FTN) carry CPRI and eCPRI traffic
- Initially CPRI and eCPRI carried over separate wavelengths or fiber
- Future: CPRI and eCPRI carried over same wavelength/fiber
 - Necessitates Radio over Ethernet (RoE/IEEE 1914.3) to convert CPRI to Ethernet


Converged Access Switch/Fronthaul Gateway

- Converged access switches bring together CPRI and eCPRI fronthaul:
- CPRI converted to Ethernet (RoE):
- RoE Test applications:
 - Structure agnostic:
 - CPRI sync,
 - bulk BERT (all IQ channels)
 - Structure aware:
 - CPRI sync
 - Channelized BERT (per AxC)
 - Control word transparency (e.g. C&M, VSB)

Converged Access Switch/Fronthaul Gateway

- Low PHY enables connection of CPRI radios to virtualized CU/DU
- Test applications TBD:
 - Provide eCPRI master and slave function
 - Emulate CPRI slave
 - Test Time Domain IQ against Frame Domain IQ

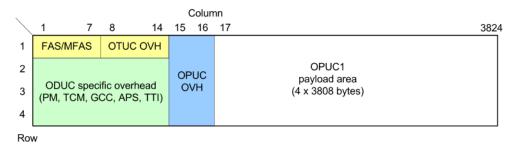

Timing Sensitive Network (TSN) Switch

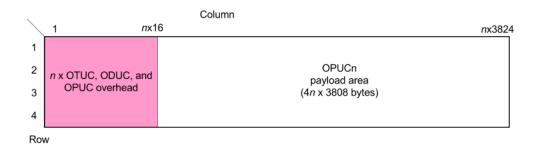
- TSN switches prioritize express traffic in accordance with respective IEEE standards
- TSN test applications::
 - Emulate express and preemptable traffic
 - Provide different traffic profiles (frame size, burst,...)
 - Measure packet loss, delay and jitter for different type of traffic and profiles

Converged Access Switch/Fronthaul Gateway

- Converged access switches provides T-BC function to deliver strict 5G timing requirements:
- Synchronization applications::
 - PTP:
 - Emulate PTP master and slave,
 - Perform time error measurements and compare against ITU-T G.827x limits
 - SyncE
 - Emulate SyncE master and slave
 - Measure frequency offset
 - Verify ESMC

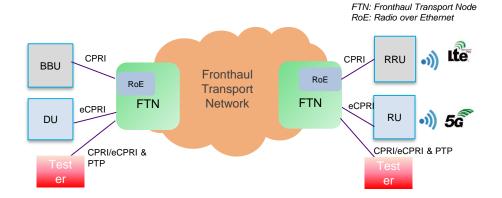
20


FlexE/SPN Technology


- FlexE provides hard separation between different types of services -> SLA's of each service can be met without impacting the other services (aka Network Slicing)!
- Example:
 - Service 1: eMBB: bandwidth sensitive
 - Service 2: uRLLC: delay sensitive
- Slicing Packet Network (SPN) -> ITU-T G.mtn (Metro Transport Networks)
- · Verify bandwidth, latency, jitter for different slices

OTN Technology

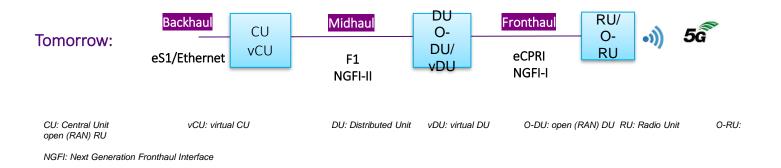
- Delivers transparency, extended reach and network management
- Helps aggregate and switch lower rate RU signals
- Not efficient for variable traffic
- OTN B100G -> Flexible OTN (FlexO)
 - G.709.1 FlexO recommendation (2016)
 - Over n x 100 Gbps PHYs
 - Signal format n x ODUC -> ODUCn
- G.709.25-50 (25 and 50G OTN interfaces)
- Validate FEC, ODU headers (PM/TCM,..), client signal transparency


VIAVI

Converged 4G/5G fronthaul network

- Fronthaul Transport Nodes (FTN) carry CPRI and eCPRI traffic
- Initially CPRI and eCPRI carried over separate wavelengths or fiber
- Future: CPRI and eCPRI carried over same wavelength/fiber

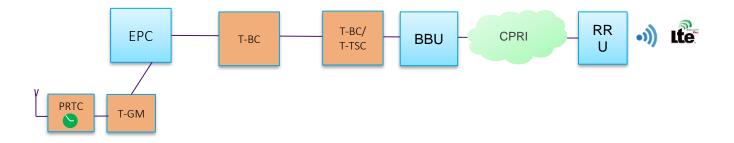
Test applications:


- CPRI to CPRI test (bit error, delay)
- eCPRI to eCPRI test
- Synchronization test

Synchronization

5G Synchronization Network

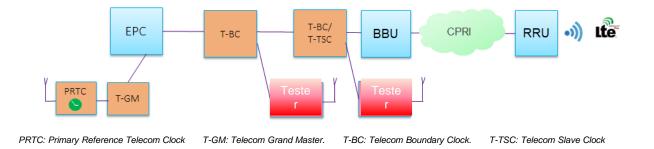
- 5G requires synchronization!
 - GPS might not be viable, since millimeter wave radios need to be close to street level-> poor line of sight in dense/urban areas
 - 5G becomes more dependent on network synchronization
- eCPRI is <u>not</u> synchronized (unlike CPRI)
 - PTP/SyncE essential for 5G fronthaul


eCPRI Synchronization Requirements

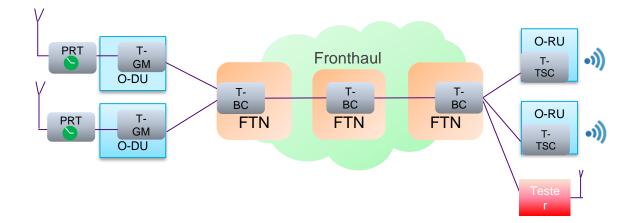
- SLA's defined in terms of absolute Time Error |TE|
- SLA's derived from Time Alignment Error TAE
- Different categories dependent on wireless service needs

Category (note 1)	Time err	Time error requirements at UNI, TE Typical applications and time alignment error (TAE requirements at antenna ports of eREs (for information)					
	Case 1 (note 2) Case 1.1 Case 1.2				Case 2	Typical applications	TAE
					(note 3)		
			1				
	(note 4)	(note 5)					
A+	N.A.	N.A.	20 ns	MIMO or TX diversity transmissions, at	65 ns		
	N.A.	N.A.	(relative)	each carrier frequency	(note 6)		
Α		60 ns	70 ns	Intra-band contiguous carrier aggregation,	130 ns		
	N.A.	(relative)	(relative)	with or without MIMO or TX diversity	(note 6)		
		(note 7)					
В	100ns	190 ns	200 ns	Intra-band non-contiguous carrier	260 ns		
	(relative)	(relative)	(relative)	aggregation, with or without MIMO or TX diversity, and	(note 6)		
	(note 7)	(note 7)	(relative)	Inter-band carrier aggregation, with or			
				without MIMO or TX diversity			
С	1100 ns		1100 ns	3GPP LTE TDD	3 us		
(note 8)	(absolute) (note 9)		(absolute)		(note 10)		
			(note 9)				

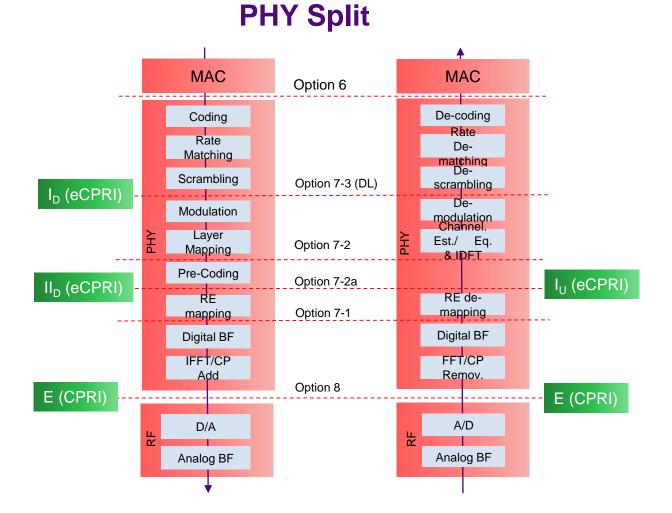
Network based synchronization


- PTP/SyncE requires special switch/router function
 - Boundary Clock (T-BC) function ensures proper synchronization
- For the end-to-end network synchronization
 - All T-BC must:
 - Work properly (connect to Grandmaster (T-GM)
 - Deliver minimum delay (time error)

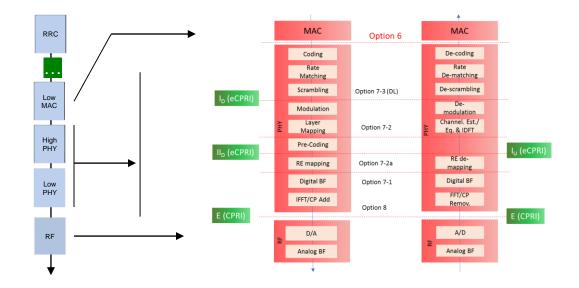
Backhaul Synchronization Test Applications


Time Error measurement at various reference points

- Constant Time Error cTE
- Dynamic Time Error dTE (MTIE/TDEV)
- Maximum Time Error Max |TE|
- Metrics defined in ITU-T G.8271.1 (FTS)/G.8271.2 (PTS/APTS)


Fronthaul Synchronization Test Application

- ORAN Priority: G.8275.1 profile: Time Error measurements at O-RU input
- Second priority G.8275.2 profile
- Absolute TE: against GNSS
- Relative TE: perform Absolute TE at different radios and aggregate


Backup

VIAVI

PHY Split

- Option 7-3 has the lowest BW requirements
- Option 7-1: simple DU design, joint equalization
- eCPRI specification does not include C&M, OAM, and Sync services

