Massive MIMO for 5G below 6 GHz

Achieving Spectral Efficiency, Link Reliability, and Low-Power Operation

Associate Professor Emil Björnson

Department of Electrical Engineering (ISY) Linköping University Sweden

Dr. Emil Björnson

- PhD from KTH, Sweden; Postdoc at SUPELEC, Paris, France
- Associate professor at Linköping University, Sweden
- 10 year experience of MIMO research
- 2 books and 7 best paper awards
- Some ten pending patent applications
- Writer at the Massive MIMO blog, http://massive-mimo.net
 - First author of textbook "Massive MIMO Networks", Nov. 2017

Outline

- Why Cellular Networks Must Become More Efficient
- 2. How Massive MIMO Improves Spectral Efficiency
- Beyond Mobile Broadband: Link Reliability, Low-Power Operation

Foundations and Trends® in Signal Processing

Massive MIMO Networks
Spectral, Energy,
and Hardware Efficiency

Emil Björnson, Jakob Hoydis and Luca Sanguinetti

Now

the essence of knowledge

The Success of Wireless Communications

- More devices and data traffic every year
 - 10% more devices
 - 47% more traffic (33% more per device)

How to pay for this?

Higher network throughput in 5G

Revenue from new use cases:

Internet-of-things

Ultra-reliable communication

etc.

Data source: Ericsson Mobility Report (July, November 2017)

Improving Cellular Networks

Formula for Network Throughput [bit/s/km²]:

- Hotspot tier
 - High cell density, short range per cell
 - Wide bandwidths in mm-wave bands
 - Spectral efficiency less important
- Coverage tier (focus today)
 - Provide coverage, elevated base stations
 - Outdoor-to-indoor coverage: Operate <6 GHz
 - High spectral efficiency is desired

Desired: Stronger signal, same interference levels

Beamforming is the Solution!

Same transmit power

- Color indicates path loss in dB
- M base station (BS) antennas
- Main lobe focused at user

More antennas

- Narrower beams, laser-like
- Array gain: 10 log₁₀(M) dB larger at user
- Less leakage in undesired directions

Massive MIMO (multiple input multiple output)

- Main Characteristics
 - Many BS antennas; e.g., M = 200 antennas, K = 40 single-antenna users

Many more antennas than users: M≫K

- High spectral efficiency
 - Many simultaneous users
 - Strong directive signals
 - Little interference leakage

- Combines the best concepts from past decades of multi-user MIMO research
- 2013 IEEE Marconi Prize Paper Award, 2015 IEEE W. R. G. Baker Award

Massive MIMO Provides Favorable Propagation

Consider two users

M-dimensional channels: h₁, h₂

Favorable propagation

 $\frac{\mathbf{h}_1}{\|\mathbf{h}_1\|}$ and $\frac{\mathbf{h}_2}{\|\mathbf{h}_2\|}$ are orthogonal

Base station can fully separate the users

Source: J. Hoydis, C. Hoek, T. Wild, and S. ten Brink, "Channel Measurements for Large Antenna Arrays," ISWCS 2012

Deploying Many Antennas Below 6 GHz

One dual-polarized antenna elements

Number of Antennas

- 8.8 = 64 per sector
- 192 antennas per site

LTE: One input/output per polarization! Massive MIMO: One per antenna element

Upgrade Existing Sites to Massive MIMO

No sectorization (achieved by beamforming) Equipment size similar to top-of-the-line LTE Massive in numbers, not in size

3 sectors.

1 site

One dual-polarized antenna panel

Spatial Multiplexing Requires Digital Beamforming

- How to implement beamforming?
 - Send same signal from all antennas
 - Vary phase/amplitude per antenna
 - Vary phase/amplitude per subcarriers
- Spatial multiplexing: Superimpose beams

Flexible Implementation

Hybrid beamforming:
Cannot adapt amplitude or subcarriers

Digital beamforming: Full flexibility

Digital is the future!

Digital beamforming

Hybrid beamforming

Phase-shifters

"Channel State Information isn't Everything; it's the Only Thing" – T. Marzetta

We need to know where the point the beam!

- Conventional approach: Grid-of-beams
 - Try 8 angular beams, user reports the best one
 - Good: Simple, works with both TDD and FDD
 - Bad: Never a perfect match; too much inter-user interference
- Massive MIMO: Uplink estimation
 - User sends pilot signal, BS estimates channel
 - Good: Well-matched estimates, scalable with many antennas
 - Bad: Only works in TDD, where uplink estimates useful for downlink

World Record in Spectral Efficiency

- 145.6 bit/s/Hz/cell
 - Set jointly by researchers in Bristol and Lund, 2016
 - 128 BS antennas
 - 22 single-antenna users
 - 256-QAM signals
 - 20 MHz band at 3.5 GHz

Is this practical?

Multiplexing tens of users is practical Low-order modulations will mainly be used in practice

Screenshot from "Massive MIMO World Records" **Link:** https://youtu.be/NoDP3g8XHVQ

High Spectral Efficiency in Cellular Networks

Pilots reused in every third cell

Uplink simulation: SNR 5 dB, i.i.d. Rayleigh fading, zero-forcing combining, channels fixed for 500 channel uses

High spectral efficiency per cell, ~3 bit/s/Hz to every user

5G is More Than Broadband: Internet-of-things (IoT)

- Wirelessly connected society
 - Machines, vehicles everything gets connected
 - Other use cases than mobile broadband
- Case 1: Link Reliability is Very Important
 - Connected factory robots, traffic safety applications, etc.
 - Ultra-reliable low-latency communication (URLLC)
- Case 2: Massive machine-type communication (mMTC)
 - Many low-cost sensors and actuators deployed everywhere (50 billion by 2020)
 - Sporadic transmission, battery should last for 5 years

Can Massive MIMO play a role here?

Channel Hardening

Consider a random channel, e.g., $\mathbf{h} \sim CN(\mathbf{0}, \mathbf{I}_M)$

Variations of effective channel reduce with M:

$$\frac{1}{M} \|\mathbf{h}\|^2$$
 has $\begin{cases} \text{Mean: 1} \\ \text{Variance: 1/M} \end{cases}$

Few antennas

Narrower beam:

Fewer multipath components involved

Many antennas

Double benefits:

 $\|\mathbf{h}\|^2$ scales with MVariations reduces

Great Link Reliability and Simplified Resource Allocation

Higher reliability, lower latency

- Lost package if ||h||² < threshold
 - · Less likely with channel hardening
 - Fewer retransmissions

Resource allocation made simple

- All subcarriers good, all the time
 - No need to schedule based on fading
 - Each user gets the whole bandwidth, whenever needed

Two Ways to Exploit the Array Gain

1) Range Extension

- Use same transmit power
 - Higher rates to already covered places
 - Reach new places (e.g., indoor)

2) Low-Power Operation

Use $5 \log_{10}(M)$ to $10 \log_{10}(M)$ dB less power

- Same range with reduced power
 - Increase battery lifetime in uplink
 - Low power per antenna in downlink
 40 W → 4 W per BS, 40 mW/antenna

Supporting Internet-of-Things (IoT)

SNR over 100 kHz channel:

$$20 \text{ dBm}$$
 + 2.15 dBi + 2.15 dBi - 150 dB -

- Sufficient for binary modulation with repetition coding
- Transmit a few data packages per day (very low energy per package)

*Massive MIMO with
$$M = 100$$*

Increase SNR by 20 dB (range extension)
Improve link reliability

Reduce transmit power to 10 dB

Up to 10x longer battery life

Summary: Massive MIMO for 5G below 6 GHz

- 1. Mobile broadband applications
 - Very high spectral efficiency, multiplex many user
 - Great improvements at the cell edge

- 2. Ultra-reliable low-latency communication (URLLC)
 - Channel hardening alleviates small-scale fading
 - Fewer retransmissions, more predictable performance
- 3. Massive machine-type communication (mMTC)
 - Extend coverage, more cost-efficient deployment
 - Reduce transmit power for battery-power devices

Learn More: Blog and Book

Massive MIMO blog: www.massive-mimo.net

Youtube channel:

Massive MIMO for 5G: How Big Can it Get?

https://youtu.be/m9wEAucKoWo

New book:

Emil Björnson, Jakob Hoydis and Luca Sanguinetti (2017), "Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency"

517 pages, Matlab code

\$40 for paperback until Jan 31 Use discount code 996889 on **nowpublishers.com**

massivemimobook.com

Thank you!

Questions are most welcome!

Dr. Emil Björnson

Slides, papers, and code available online:

http://www.ebjornson.com/research http://www.massivemimobook.com

Special offer

Emil Björnson, Jakob Hoydis and Luca Sanguinetti (2017), "Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency"

\$40 for paperback version

Price available until Jan. 31

Discount code 996889

Only at nowpublishers.com

BACKUP SLIDES

Classical Multi-User MIMO vs. Massive MIMO

		Classic multi-user MIMO	Massive MIMO (Canonical)
	Antennas M , users K	$M \approx K$	$M\gg K$
	Signal processing	Non-linear is preferred	Linear is near optimal
	Duplexing mode	Designed for TDD and FDD	Designed for TDD w. reciprocity
	Instantaneous channel	Known at BS and user	Only needed at BS (hardening)
	Channel quality	Affected by frequency- selective and fast fading	Almost no channel quality variations (hardening)
	Variations in user load	Scheduling needed if $K > M$	Scheduling seldom needed
	Resource allocation	Rapid due to fading	Only on a slow time scale
	Cell-edge performance	Only good if BSs cooperate	Improved by array gain of M
	BS cooperation	Highly beneficial if rapid	Only long-term coordination

MAMMOET (Massive MIMO for Efficient Transmission) 2014-2016

- Bridged many gaps between theoretical and practice
 - Testbed demonstrations (real-time operation, mobility)
 - New channel models
 - Concepts for efficient analog/digital hardware implementation
 - Deliverables available: https://mammoet-project.eu

Partners:

Pilot Contamination has Been Blown Out of Proportions

Open Problems

More important things than "pilot contamination"!

- Make Massive MIMO work in FDD mode
 - Long-standing challenge. Is it practically feasible to exploit sparsity?
- Channel measurements, channel modeling, traffic modeling
 - Required for system level simulations
- Implementation-aware algorithmic design
 - Implement ZF with MR-like complexity. Utilize low-resolution hardware.
- Cross-layer design
 - Scalable protocols for random access, control signaling, scheduling
- New deployment characteristics
 - Multi-antenna users, distributed arrays, cell-free (network MIMO)